自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 WSL2+WIN11+深度学习环境配置【20244.12.23更新】

2.选择合适的版本下载,本文使用cuda-11.8,此版本对于mmcv库和ultralytics适配性最高,按需即可。2.依次执行以下指令(不必挑选miniconda版本,直接无脑最新,因为需要具体的python版本建立虚拟环境即可)1.在微软商店搜索ubuntu下载对应版本,然后打开安装即可,不要管下载地址,先下载下来再说。5.加入环境变量,打开.bashrc文件(在root目录下,用记事本编辑即可)wsl和windows共用驱动,将nvidia-smi添加到环境变量中即可。4.以此执行官网给出的指令。

2024-12-23 14:27:41 830

原创 Pytorch问答

则更适合快速实验和研究,或者在不需要模块化和参数管理的情况下构建简单的网络。更适合构建复杂的、需要参数管理的模型,而。在PyTorch中,

2024-10-17 17:34:21 365

原创 文献记录(持续更新)

1.知识蒸馏:Distilling the Knowledge in a Neural Network。

2024-09-29 22:36:35 157

原创 杂记QA模式(持续更新)

A1:金字塔池化(Pyramid Pooling),在计算机视觉领域,特别是在深度学习用于图像分割任务时,是一种有效的特征融合和上下文信息捕捉技术。它最早是在DeepLab系列网络中被提出的,用于改善语义分割的精度。具体来说,金字塔池化的主要思想是将特征图的不同区域进行池化操作,以获得不同尺度的上下文信息。特征图分割:首先,对卷积网络提取的特征图进行分割,分割的块数会根据金字塔的层级来决定。池化操作:对每一个分割块执行池化操作(如最大池化或平均池化)。

2024-09-26 21:54:57 1040

原创 李沐矩阵公式推导与过程答疑

是 PyTorch 中自动微分引擎的一部分,它表示一个张量是通过乘法操作得到的,并且在反向传播时用于计算梯度。这个属性对于自动计算梯度至关重要,因为它记录了张量在计算图中的来源和创建方式。这个新张量c的grad_fn属性被设置为MulBackward0,这是一个用于在反向传播中计算梯度的函数。在更复杂的情况下,如果涉及多个变量和操作,PyTorch 的自动微分引擎会构建一个计算图,并使用这些。回溯计算图中的每个操作,从而计算出每个参数的梯度。乘法操作的结果是一个新张量(在这个例子中是c)。

2024-09-20 22:34:35 576

原创 Python的os库

os模块是 Python 标准库中的一个重要模块,它提供了与操作系统交互的功能。除了os.path之外,os模块还包含了许多其他有用的函数和子模块。下面是一些常见的os。

2024-08-08 20:37:03 825 1

原创 配置文件格式

每种格式都有其特定的语法和用途,选择哪种格式取决于项目需求、团队偏好以及与其他系统的集成需求。常见的选择包括 YAML 和 JSON,因为它们具有良好的人类可读性和广泛的支持。配置文件可以采用多种格式来组织和存储数据和设置。

2024-06-26 11:17:09 558

原创 pip install -e .

安装为可编辑模式意味着你可以在该包的源码目录中进行修改,并且修改会立即生效,不需要重新安装。: 将当前目录下的包安装到系统的 Python 环境中,但是不会将包复制到 Python 安装路径中,而是创建一个符号链接或者直接使用当前的源码路径作为安装路径。参数表示 “editable”,意味着你正在安装一个可编辑的包,也就是一个开发中的源码包或者本地的代码库,而不是一个发布的版本。允许你在当前目录安装一个 Python 包,并以可编辑模式安装,方便开发和调试代码。中定义),然后自动安装这些依赖项。

2024-06-24 10:03:24 5753

原创 Linux终端命令:清除屏幕

Linux终端命令:清除屏幕clear:清除屏幕(向后翻页)ctrl+l:等价clearreset:重启终端

2024-06-19 11:53:45 585

原创 Python虚拟环境的管理

导出虚拟环境(依赖列表)导入虚拟环境(依赖列表)

2024-06-17 15:47:52 339

原创 conda模块所在通道的相关问题

默认情况下,conda会搜索默认通道(如conda-forge、anaconda、defaults等),但用户可以通过添加"-c"参数来指定使用特定通道。这条命令是用于通过conda(Anaconda或Miniconda的包管理器)安装名为"opencv"的软件包,但是要从"Anaconda官方网站提供了一个包搜索工具,你可以在其中搜索特定的包名称,它会显示包的详细信息,包括所在的通道。"参数表示指定的通道(channel),而"menpo"是指opencv软件包所在的通道。

2024-06-16 21:04:09 546

原创 有关于ubuntu 22.04的文件权限管理

文件最后被修改的时间。

2024-06-14 09:54:01 980

原创 在ubuntu22.04下安装cursor

将AppImage文件移动到/opt目录,创建一个.desktop文件,并将图标文件也移动到/opt目录。可能是使用的过程中,或者在配置其他环境时,误删了fuse,可重新安装fuse,把流程重新走一遍即可。此时没有图标,找一个自己喜欢的图标下载好。

2024-06-12 17:27:18 14615

原创 有关于推理结果的格式问题

边界框格式;推理概念;

2024-06-07 16:02:46 508

原创 学习笔记_问题记录

什么是预训练和微调?预训练(pre-training/trained):你需要搭建一个网络来完成一个特定的图像分类的任务。首先,你需要随机初始化参数,然后开始训练网络,不断调整直到网络的损失越来越小。在训练的过程中,一开始初始化的参数会不断变化。当你觉得结果很满意的时候,就可以将训练模型的参数保存下来,以便训练好的模型可以在下次执行类似任务时获得较好的结果。这个过程就是pre-training。之后,你又接收到一个类似的图像分类的任务。

2024-05-30 09:15:26 1080

原创 Linux下的Python3版本切换__学习笔记

我们列表中的第二个 Python 版本是 Python 3.8。参考Python3.6 的安装方法进行下载和安装,此处只用了方法一,方法二请照猫画虎;全部的python版本已经部署完毕,下面解释如何在不同的 Python 版本之间切换。本文将要安装的最后一个 Python 版本是 Python3.5 版本;要检查已安装的版本,请执行命令python3.5 -V;要检查已安装的版本,请执行命令。要检查已安装的版本,请执行命令。下载.tgz文件,下载后执行。要检查已安装的版本,请执行命令。

2024-05-27 16:41:30 1926

原创 Ubuntu22.04_AI环境部署_CUDA_cuDNN9_cuDNN8

>cuda11.6版本在安装时不提供samples,需要去到github上面下载。注意:以下cd的路径文件,请切换到自己文件系统的目录下进行!以上适用于v8的cuDNN,通过下载tar文件的方式配置环境变量。我们已经安装了显卡驱动程序和CUDA;注意:切换到该文件所在目录下运行!如果系统还没有安装zlib包,可先。解压并复制文件到CUDA目录。查看下载好的cuda版本。

2024-05-27 10:28:37 1503 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除