🌸大家好,上章我们讲到了hive的7中Join方式,本章将来讲解Hive中的排序,以往的部分可以查看下方链接👇
- 第一篇: Hadoop之Hive数据的导入与导出(DML).
- 第二篇: Hadoop之Hive查询语句.
- 第三篇:Hadoop之Hive的7种Join语句.
🐱 今天我们来学习Order By、Sort by、distribute by、Cluster by
1.全局排序
- Order By:全局排序,只有一个 Reducer
- ASC(ascend): 升序(默认)
- DESC(descend): 降序
例:
--查询员工信息按照工资升序排列
select ename,sal from emp order by sal;
--查询员工信息按照工资降序排列
select ename,sal from emp order by sal desc;
2.按照别名排序
按照员工薪水的2倍排序
select ename, sal*2 twosal from emp order by twosal;
3.多个排序
按照部门和工资升序排序
select ename, deptno, sal from emp order by deptno, sal;
4.每个reduce 内部排序(sort by)
- Order By:对于大规模的数据集 order by 的效率非常低。在很多情况下,并不需要全局排序,此时可以使用 sort by。
- Sort by 为每个 reducer 产生一个排序文件。每个 Reducer 内部进行排序,对全局结果集来说不是排序。
首先设置reduce个数
set mapreduce.job.reduces=3;
查看设置 reduce 个数
set mapreduce.job.reduces;
根据部门编号降序查看员工信息
select ename,deptno from emp sort by deptno desc;
说好的分区,我也没看到,还是保存表来看看吧。
将查询结果导入到文件中(按照部门编号降序排序)
insert overwrite local directory '/opt/modul/datatest/sortby-result'
select ename,deptno from emp sort by deptno desc;
放到文件中:
每个人文件里都包含着一个区,但分区的方式是随机的
这里大家可能不太了解分区表,我将在下一章节进行介绍。
5. 分区内部排序(distribute by)
Distribute by:在有些情况下,我们需要控制某个特定行应该到哪个 reduce,通常是为了进行后续的聚集操作。distribute by 子句可以做这件事。distribute by 类似 MR 中 partition(自定义分区),进行分区,结合 sort by 使用。
- distribute by 的分区规则是根据分区字段的 hash 码与 reduce 的个数进行模除后,余数相同的分到一个区。
- Hive 要求 DISTRIBUTE BY 语句要写在 SORT BY 语句之前。
例:
先按照部门编号分区,再按照员工编号降序排序
--设置分区个数为4
set mapreduce.job.reduces=4;
--根据条件进行分区
insert overwrite local directory '/opt/modul/datatest/distribute-result'
select deptno,empno from emp distribute by
deptno sort by empno desc;
结果会分为4个分区
我们看一下每个分区的内容:
6.分区( Cluster By)
- 当 distribute by 和 sorts by 字段相同时,可以使用 cluster by 方式。
- cluster by 除了具有 distribute by 的功能外还兼具 sort by 的功能。但是排序只能是升序
排序,不能指定排序规则为 ASC 或者 DESC。
--下列两种方法等价
select * from emp distribute by deptno sort by deptno;
--等价
select * from emp cluster by deptno;
参考资料
《大数据Hadoop3.X分布式处理实战》