LeetCode DAY38(518. Coin Change II&377. Combination Sum IV)

文章介绍了使用动态规划方法解决LeetCode上的两道问题:CoinChangeII和CombinationSumIV。分别讨论了如何找到组成给定金额的不同硬币组合数以及找出数组中数字组合成目标值的方案数。提供了C++的解决方案,并强调了在处理可能超出整型范围的和时的注意事项。
摘要由CSDN通过智能技术生成

Preface

This is a new day to continue my Dynamic Programming journey.
Learn something new and keep reviewing what I learnt before.

1. Coin Change II

LeetCode Link: 518. Coin Change II
You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

Return the number of combinations that make up that amount. If that amount of money cannot be made up by any combination of the coins, return 0.

You may assume that you have an infinite number of each kind of coin.

The answer is guaranteed to fit into a signed 32-bit integer.

Example 1:

Input: amount = 5, coins = [1,2,5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:

Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:

Input: amount = 10, coins = [10]
Output: 1

Constraints:

1 <= coins.length <= 300
1 <= coins[i] <= 5000
All the values of coins are unique.
0 <= amount <= 5000

Analysis and Solution

Dynamic Programming

LeetCode C++ as followings Dynamic Programming

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++) { // traverse items firstly
            for (int j = coins[i]; j <= amount; j++) { // traverse backpack secondly,The order cannot be reversed.
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

2. Combination Sum IV

LeetCode Link: 377. Combination Sum IV
Given an array of distinct integers nums and a target integer target, return the number of possible combinations that add up to target.

The test cases are generated so that the answer can fit in a 32-bit integer.

Example 1:

Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Example 2:

Input: nums = [9], target = 3
Output: 0

Constraints:

1 <= nums.length <= 200
1 <= nums[i] <= 1000
All the elements of nums are unique.
1 <= target <= 1000

Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?

Analysis and Solution

Dynamic Programming

LeetCode C++ as followings Dynamic Programming

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <= target; i++) { // traverse backpack
            for (int j = 0; j < nums.size(); j++) { // traverse items
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {//The test case has data that the sum of two numbers exceeds int, so you need to add dp[i] < INT_MAX - dp[i - num] in if.
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值