自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 机器学习线性回归全解析:从原理到实战,一文掌握

线性回归是机器学习领域最基础且重要的算法之一,它不仅是理解复杂模型的基石,还在实际应用中广泛使用。无论是预测房价、分析销售趋势,还是构建推荐系统,线性回归都扮演着重要角色。本文将从原理出发,深入解析线性回归的核心思想、数学推导、实现方法及应用技巧,帮助读者全面掌握这一经典算法。线性回归作为机器学习的基础算法,虽然简单但功能强大,是理解更复杂模型的基石。本文从原理出发,详细介绍了线性回归的数学表达、参数求解方法、实现技巧以及优化扩展。

2025-06-04 22:58:49 2058

原创 KNN算法详解

K最近邻(K-Nearest Neighbors, KNN)是机器学习中最直观、最易理解的算法之一。它的核心思想简单到令人惊讶——"物以类聚,人以群分"。当你需要预测一个新数据点的类别时,只需查看它在数据集中最近的"邻居"们如何分类。选定离自身距离最近的K个邻居样本(相似度最高),在这K个样本中如果有某个类别的邻居占比最大,那么我们将要预测的样本也归为这一类别。

2025-06-03 21:41:00 1488

原创 机器学习概述

本文系统介绍了人工智能的基础概念与机器学习知识体系。主要内容包括:1)AI三大核心概念(机器学习、深度学习、自然语言处理)及其层级关系;2)AI典型应用场景;3)AI发展三要素(数据、算法、算力);4)两种算法学习方式(基于规则和基于模型)的区别;5)机器学习算法分类(监督/无监督/强化学习等);6)标准建模流程(数据获取、特征工程、模型训练与评估)。文章强调特征工程的重要性与学习建议,指出机器学习是AI基础,需理论与实践结合,注重理解而非数学推导,建议稳扎稳打打好基础。

2025-05-28 23:02:33 649

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除