动态规划:
一、121. 买卖股票的最佳时机
题目:
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
思路:
先想到的是贪心算法,左找最小右找最大
class Solution {
public int maxProfit(int[] prices) {
int low=Integer.MAX_VALUE;
int res=0;
for(int i=0;i<prices.length;i++){
low=Math.min(low,prices[i]);
res=Math.max(res,prices[i]-low);
}
return res;
}
}
其次想到的是动态规划:
动规五部曲分析如下:
1、确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金。
注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态
2、确定递推公式
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
这样递推公式我们就分析完了
3、dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出
其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
4、确定遍历顺序
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
5、举例推导dp数组
public static int maxProfit(int[] prices) {
if (prices == null || prices.length == 0) return 0;
int length = prices.length;
// dp[i][0]代表第i天持有股票的最大收益
// dp[i][1]代表第i天不持有股票的最大收益
int[][] dp = new int[length][2];
int result = 0;
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
//dp[i - 1][0] + prices[i]是第i天卖出的收益
// dp[i - 1][1]是前一天得到的最大收益
}
return dp[length - 1][1];
}
关于动态规划的第二种,参考了斐波那契数列的滚动数组方式,只不过一个是相加,一个是相减;一个是相邻,一个是可以不相邻。
public int maxProfit(int[] prices) {
int[] dp = new int[2];
// 记录一次交易,一次交易有买入卖出两种状态
// 0代表持有,1代表卖出
dp[0] = -prices[0];
dp[1] = 0;
// 可以参考斐波那契问题的优化方式
// 我们从 i=1 开始遍历数组,一共有 prices.length 天,
// 所以是 i<=prices.length
for (int i = 1; i <= prices.length; i++) {
// 前一天持有;或当天买入
dp[0] = Math.max(dp[0], -prices[i - 1]);
// 如果 dp[0] 被更新,那么 dp[1] 肯定会被更新为正数的 dp[1]
// 而不是 dp[0]+prices[i-1]==0 的0,
// 所以这里使用会改变的dp[0]也是可以的
// 当然 dp[1] 初始值为 0 ,被更新成 0 也没影响
// 前一天卖出;或当天卖出, 当天要卖出,得前一天持有才行
dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);
}
return dp[1];
}
二、 122.买卖股票的最佳时机II
题目:
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
- 1 <= prices.length <= 3 * 10 ^ 4
- 0 <= prices[i] <= 10 ^ 4
思路:
之前贪心算法做过这道题:
简单回顾贪心算法的做法:
// 贪心思路
class Solution {
public int maxProfit(int[] prices) {
int result = 0;
for (int i = 1; i < prices.length; i++) {
result += Math.max(prices[i] - prices[i - 1], 0);
}
return result;
}
}
动态规划:
五部曲其实和上一题类似,只是判定max那不一样
// 动态规划
class Solution
// 实现1:二维数组存储
// 可以将每天持有情况分别用 dp[i][0] (不持有)和 dp[i][1] (持有)来进行存储
// 时间复杂度:O(n),空间复杂度:O(n)
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2]; // 创建二维数组存储状态
dp[0][0] = 0; // 初始状态
dp[0][1] = -prices[0];
for (int i = 1; i < n; ++i) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]); // 第 i 天,没有股票
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]); // 第 i 天,持有股票
}
return dp[n - 1][0]; // 卖出股票收益高于持有股票收益,因此取[0]
}
}
优化空间后:
// 优化空间
class Solution {
public int maxProfit(int[] prices) {
int[] dp = new int[2];
// 0表示持有,1表示卖出
dp[0] = -prices[0];
dp[1] = 0;
for(int i = 1; i <= prices.length; i++){
// 前一天持有; 既然不限制交易次数,那么再次买股票时,要加上之前的收益
dp[0] = Math.max(dp[0], dp[1] - prices[i-1]);
// 前一天卖出; 或当天卖出,当天卖出,得先持有
dp[1] = Math.max(dp[1], dp[0] + prices[i-1]);
}
return dp[1];
}
}