59. 螺旋矩阵 II
题目:给你一个正整数 n ,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。
链接 https://leetcode.cn/problems/spiral-matrix-ii/
个人思路
- 模拟
这道题刚开始看到时想了一晚上该怎么打印,其实也想到了官解的模拟,但是代码不会写,甚至想到了设置一个标志,类似于旗帜那样,但也无从下手,然后看了解答后豁然开朗,但当时没有cv,也没有立刻开写,然后现在过了几天自己终于写出来了。这里有个问题,就是我在刚开始构建二维数组测试时,使用了ans = [[0]*n]*n
结果发现修改某个值时,整列数字都会被修改,后来发现是list * n的原因, list * n是n个list的浅拷贝的连接,即每个list指向的内存空间的同一个位置。要构造二维数组需要用列表表达式[[0] * m for _ in range(n)]
然后模拟的时候,我们在while num <= n * n 进行循环,在每个循环里面根据从左到右,从上到下,从右到左,从下到上的规律进行外圈模拟,逐渐到内圈,代码如下:这里边界加减有个规律就是当你填充完从左到右后,说明顶部已经填充完一行,那么顶部边界t就要+1,其他类似
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
ans = [[0] * n for _ in range(n)]
# 左右上下的边界
l,r,t,b = 0,n-1,0,n-1
num = 1
while num <= n * n:
# 左到右
for i in range(l,r+1):
ans[t][i] = num
num += 1
t += 1
# 上到下
for i in range(t,b+1):
ans[i][r] = num
num += 1
r -= 1
# 右到左
for i in range(r,l-1,-1):
ans[b][i] = num
num += 1
b -= 1
# 下到上
for i in range(b,t-1,-1):
ans[i][l] = num
num += 1
l += 1
return ans
复杂度分析
复杂度分析
时间复杂度:O(n^2),其中 n 是给定的正整数。矩阵的大小是 n×n,需要填入矩阵中的每个元素。
空间复杂度:O(1)。除了返回的矩阵以外,空间复杂度是常数。
其他思路
- 官解写法
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
dirs = [(0, 1), (1, 0), (0, -1), (-1, 0)]
matrix = [[0] * n for _ in range(n)]
row, col, dirIdx = 0, 0, 0
for i in range(n * n):
matrix[row][col] = i + 1
dx, dy = dirs[dirIdx]
r, c = row + dx, col + dy
if r < 0 or r >= n or c < 0 or c >= n or matrix[r][c] > 0:
dirIdx = (dirIdx + 1) % 4 # 顺时针旋转至下一个方向
dx, dy = dirs[dirIdx]
row, col = row + dx, col + dy
return matrix
- 按层模拟
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
matrix = [[0] * n for _ in range(n)]
num = 1
left, right, top, bottom = 0, n - 1, 0, n - 1
while left <= right and top <= bottom:
for col in range(left, right + 1):
matrix[top][col] = num
num += 1
for row in range(top + 1, bottom + 1):
matrix[row][right] = num
num += 1
if left < right and top < bottom:
for col in range(right - 1, left, -1):
matrix[bottom][col] = num
num += 1
for row in range(bottom, top, -1):
matrix[row][left] = num
num += 1
left += 1
right -= 1
top += 1
bottom -= 1
return matrix
参考:
作者:LeetCode-Solution
链接:https://leetcode.cn/problems/spiral-matrix-ii/solution/luo-xuan-ju-zhen-ii-by-leetcode-solution-f7fp/