谷歌竞价的本质
谷歌的竞价是一种机器学习系统。它是以转化目标为优化目的的点击出价。
在这里不需要关注点击多少,展示多少,而以投入产出比为衡量标准的。它可以提高单次点击的价值和精准性。最终目标是以目标转化为核心标准的。
谷歌竞价的目标所在:
衡量标准是,更少的点击,更高的投入产出比为衡量标准的。
以转化目标为优化目的的点击出价,计费方式为按点击计费。我们目前选择的是以用户访问的网址路径进行跟踪。
机器学习的运行模式
机器学习出价分为两个投放阶段,第一个阶段一定要有数据积累,第二个阶段是智能投放。系统是根据用户的行为特征进行记录,记住过往的数据。如果以前是花费1000元得到10个询盘,那么系统作为记录特征,那么接下来。800元会比消费1000元的结果会好很多。为什么要获得数据积累,是为了足够的转化量,那么这个10个询盘是经过一段时间数据跑出来之后,才得到的结果。
机器学习呢,跟之前cpa的不同之处是,是在每次点击的基础上增加了一个目标每次转化。
从广告点击到广告主最终ROI,广告主对于漏斗路径上各个节点转化目标的价值出价。机器学习的核心是提升CVR转化,帮广告主达成KPI,不是扩量产品。不带动其基本面的增长,不能以单个元素去衡量。
获得多少展现目标值出多少钱。获得多少点击目标值出多少钱。获取每个转化目标是多少钱。 各个节点都有一个价值金额出价可以设置的。如果不利用机器学习,那么获得了1000次点击,可能有500次是不精准的,有水分的。过滤,否词,排除,无效等等。运用了之后,给每个点击赋予价值,更高价值的点击,更多回报。
谷歌机器学习的发展史,为什么会被推出。
因为社交属性变强,人们更多的利用碎片化时间去获取知识,人们的耐性变得越来越差。为了应对搜索用户短平快的需求,这是时代发展的必然性。
针对互联网的发展趋势现状,我们所对应的广告发展方向转变为:
我们需要的是直接转化。进来的每个客户,第一时间看到我们所展现的产品,进行直接询盘。精准触达,优势定位。
原始的模型是展示、点击、转化;层层递进,漏斗模型。之前的互联网现状是这样的。先进入页面,然后客服咨询。现在我们的要求是直接转化,客户点击我们,直接提交表单,发询盘,打电话。做到精准触达,已经没有多余的钱去测试,机器模型运行好之后,漏斗模型逐渐变为圆柱形模型。
每个细节都需要做到极致,每一层漏斗都会流失掉一部分客户,那么绝对理想的模型是一个圆柱体,从上到下,一点儿也不丢失,但是在现实中是不可能的。就比谁的漏斗模型逼近圆柱形。谁转化就更加好一些。就能在市场中发挥自己的竞争力。
我们的工作:
不断梳理第一个阶段的数据积累,使数据积累更加精准化,赋予更高的价值。然后进行第二个阶段的智能投放,不断压低价格,促成目标,使目标每次转化费用越来越低。来达到更少的点击,更高的投入产出的最终目的。
为了得到高价值的目标,我们需要优化的其中包括,深度了解学习产品。确定高转化关键字,扩词,否词,受众群体调整,出价策略调整,搜索网络合作伙伴,展示广告调整。时间段优化,设备优化,广告语素材优化,附加信息(图片,结构化信息,电话)