清华大学:DeepSeek从入门到精通(2025)

    清华6部 DeepSeek 原版宝典(无广告)自取

    DeepSeek文档合集下载地址:https://pan.quark.cn/s/1fff49f5fcc2

     

     

     

     

    DeepSeek文档合集下载地址:https://pan.quark.cn/s/1fff49f5fcc2

     

    ### 清华大学 DeepSeek 项目学习路径 #### 一、基础知识准备 对于希望深入了解并熟练掌握DeepSeek的人士而言,具备一定的编程基础和机器学习概念是非常有帮助的。如果读者对Python编程语言以及基本的数据结构有所了解,则可以更快地上手实践。 #### 二、获取官方资源 通过访问官方网站或相关页面下载DeepSeek:从入门精通》PDF文件[^2]。该文档清华大学权威机构联合发布,提供详尽的操作指导和技术细节说明,是不可或缺的学习材料之一。 #### 三、在线体验环境配置 用户能够直接登录至指定网址https://chat.deepseek.com来尝试使用DeepSeek服务[^1]。无需安装额外软件,在线平台支持即时交互测试不同类型的请求指令及其返回结果。 #### 四、理解核心组件与工作原理 熟悉DeepSeek架构中的各个组成部分,比如预训练模型的选择依据;同时也要关注于如何构建有效的查询语句——即所谓的“提示词”,这直接影响着最终得到的回答质量高低。 #### 五、高级特性探索 随着技能水平逐步提高,可进一步研究有关自定义微调特定领域内专用版本的方法论,或是参与社区交流分享经验心得,共同促进整个生态系统的健康发展。 #### 六、实际案例分析 参考书中给出的具体应用场景实例,如数据挖掘、知识管理和市场趋势预测等方面的成功故事,有助于加深理论认知并将所学应用于解决现实世界中存在的挑战性问题上[^3]。 ```python # Python代码示例:简单展示如何连接API接口发送请求给DeepSeek服务器端口 import requests def query_deepseek(prompt_text): url = "https://api.deepseek.com/v1/query" headers = {"Content-Type": "application/json"} data = { 'prompt': prompt_text, 'model_version': 'R1' # 使用开源版R1模型进行对话 } response = requests.post(url, json=data, headers=headers) return response.json() if __name__ == "__main__": result = query_deepseek("你好,请问你是谁?") print(result['response']) ```
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值