PAT A1044 Shopping in Mars (25 分)

75 篇文章 0 订阅

Shopping in Mars is quite a different experience. The Mars people pay by chained diamonds. Each diamond has a value (in Mars dollars M$). When making the payment, the chain can be cut at any position for only once and some of the diamonds are taken off the chain one by one. Once a diamond is off the chain, it cannot be taken back. For example, if we have a chain of 8 diamonds with values M$3, 2, 1, 5, 4, 6, 8, 7, and we must pay M$15. We may have 3 options:

Cut the chain between 4 and 6, and take off the diamonds from the position 1 to 5 (with values 3+2+1+5+4=15).
Cut before 5 or after 6, and take off the diamonds from the position 4 to 6 (with values 5+4+6=15).
Cut before 8, and take off the diamonds from the position 7 to 8 (with values 8+7=15).
Now given the chain of diamond values and the amount that a customer has to pay, you are supposed to list all the paying options for the customer.

If it is impossible to pay the exact amount, you must suggest solutions with minimum lost.

Input Specification:
Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤10^ ​5​​ ), the total number of diamonds on the chain, and M (≤10^ ​8​​ ), the amount that the customer has to pay. Then the next line contains N positive numbers D1​ ⋯DN (Di​ ≤10^ 3​​ for all i=1,⋯,N) which are the values of the diamonds. All the numbers in a line are separated by a space.

Output Specification:
For each test case, print i-j in a line for each pair of i ≤ j such that Di + … + Dj = M. Note that if there are more than one solution, all the solutions must be printed in increasing order of i.

If there is no solution, output i-j for pairs of i ≤ j such that Di + … + Dj >M with (Di + … + Dj −M) minimized. Again all the solutions must be printed in increasing order of i.

It is guaranteed that the total value of diamonds is sufficient to pay the given amount.

Sample Input 1:
16 15
3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13
Sample Output 1:
1-5
4-6
7-8
11-11
Sample Input 2:
5 13
2 4 5 7 9
Sample Output 2:
2-4
4-5
以下是AC的代码:

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 100100;
int diamonds[maxn]={0},dsumi[maxn]={0};
int solution[maxn][2]={0},nonsolu[maxn]={0},solucnt=0;
int minnons=100000010;//没有解决方案时最小金额; 

int main(void){
	int total,money;
	scanf("%d%d",&total,&money);
	for(int i=1;i<=total;i++){
		scanf("%d",&diamonds[i]);
		dsumi[i]=dsumi[i-1]+diamonds[i];
	}
	bool issolution;
	for(int i=1;i<=total;i++){
		issolution = false;
		int left=i,right=total,mid;
		while(left<=right){
			mid=(left+right)/2;
			int moneymid=dsumi[mid]-dsumi[i-1];
			if(moneymid == money){
				issolution = true;
				solution[solucnt][0]=i;
				solution[solucnt][1]=mid;
				solucnt++;
				break;
			}else if(moneymid < money){
				left=mid+1;
			}else{
				right=mid-1;
			}
		}
		if(!issolution){//没有解决方案; 
			int mright=dsumi[right]-dsumi[i-1];
			int mleft=dsumi[left]-dsumi[i-1];//mleft一定大于money; 
			if(mright > money&&minnons>=mright){//注意这里有等; 
				minnons=mright;
				nonsolu[i]=right;
			}else if(mleft > money&&minnons>=mleft){
				minnons=mleft;
				nonsolu[i]=left;
			}
		}
	}
	if(solucnt>0){
		for(int i=0;i<solucnt;i++){
			printf("%d-%d\n",solution[i][0],solution[i][1]);
		}
	}else{
		for(int i=1;i<=total;i++){
			int r=nonsolu[i];
			int temp=dsumi[r]-dsumi[i-1];
			if(temp==minnons){
				printf("%d-%d\n",i,r);
			}
		}
	}
	return 0;
}
 

思路:
这道题需要找金额等于 题目所给 M的连续数字串,如果没有的话找出金额最小满足要求的数字串。
使用数组 dsumi[maxn] 存储从1开始到 i 的数字总和,要找从i开始的满足题目要求的数字串,只需要找到下标 j,使 dsumi[j] - dsumi[i] == money 即可。这个找 j 的过程,可以用二分法使时间复杂度(整个题目的)从 O(n^ 2) 降低到 O(nlogn).
这里需要多加注意寻找过程中,如果没有 solution ,也就是 issolutionfalse,我们需要比较mleft,mright 与当前不满足要求的最小金额,minnons(因为while 循环判定条件中有等于号,出循环时如果没有solution, 那么 right+1left.)所以要先看 mright 是否就已经大于 money 了。
另外在minnons 更新过程中,条件上是有等于号的,因为可能有多个数字串和都等于 minnons,方便判定完了最后能输出多个。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值