TensorFlow 运行模型时生成的各个文件含义

本文详细解析了TensorFlow在运行模型时生成的各种文件,包括events.out.tfevents.*(记录训练指标)、graph.pbtxt(文本形式的模型结构)、checkpoint(保存路径信息)、model.ckpt-*.meta(二进制模型结构)、model.ckpt-*.index(tensor元数据)和model.ckpt-*.data-*(变量值)。此外,还介绍了checkpoint用于保存权重,GraphDef(*.pb或*.pbtxt)用于存储计算图结构,以及在不同场景下如何选择使用FrozenGraphDef和SavedModel格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运行模型时生成的各个文件

events.out.tfevents.*...: 保存的就是你的accuracy或者loss在不同时刻的值。

graph.pbtxt: 这其实是一个文本文件,保存了模型的结构信息

checkpoint: 其实就是一个txt文件,存储的是路径信息

model.ckpt-*.meta: 其实和上面的graph.pbtxt作用一样都保存了graph结构,只不过meta文件是二进制的,它包括 GraphDef,SaverDef等,当存在meta file,我们可以不在文件中定义模型,也可以运行,而如果没有meta file,我们需要定义好模型,再加载data file,得到变量值。

model.ckpt-*.index: 这是一个string-string table,table的key值为tensor名,value为serialized BundleEntryProto。每个BundleEntryProto表述了tensor的metadata,比如那个data文件包含tensor、文件中的偏移量、一些辅助数据等。

model.ckpt-*.data-*: 保存了模型的所有变量的值,Tensor集合。

可以看到第一行表示最近的一次checkpoints路径信息,也就是说可能因为某种原因你的模型训练中断了。不过没关系,下次重新训练时,会自动从上次的断点继续训练而不用重新训练了。后面两项则表示已经保存的所有断点路径。

 

CheckPoint(*.ckpt)

在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”

这种格式文件是由 tf.train.Saver() 对象调用 saver.save() 生成的,只包含若干 Variables 对象序列化后的数据,不包含图结构,所以只给 c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值