离散数学
weixin_48189061
这个作者很懒,什么都没留下…
展开
-
有向图顶点的度数计算
题目:求有向图所有顶点的出度与入度。输入:第一行为正整数N(0<N<=100),代表图中点的个数。接下来N行,每行有N个数据,每个数据以空格分隔,代表邻接矩阵。注意:输入的都是有向图输出:输出N行,每行2个数字,每行格式都是:A空格B其中A为出度,B为入度#include<iostream>using namespace std;const int Max = 100;class Graph{private: int N; int V[Max][Max原创 2022-01-04 16:55:41 · 1895 阅读 · 0 评论 -
有向图连通性的判定
题目:判断一个图是否为强连通图、单向连通图、弱连通图。输入为有向图的邻接矩阵。输入:第一行为正整数N(0<N<=100),代表图中点的个数。接下来N行,每行有N个数据,每个数据以空格分隔,代表邻接矩阵。注意:输入的都是连通图。输出:输出有一行,字母A,B,CA代表强连通图B代表单向连通图C代表弱连通图#include<iostream>#include<memory>using namespace std;const int Max = 100原创 2022-01-04 16:51:36 · 2983 阅读 · 0 评论 -
网络楼楼通(最小生成树)
题目:用避圈法求无向图G的最小生成树输入:正整数N M,N代表无向图G的阶数;M代表边数。随后的M行对应M条边,每行给出3个正整数,分别是该边关联的两个顶点以及该边的权值(假设所有顶点从1到N编号,所有边的权值都不同)。输出:用避圈法生成最小生成树过程中选择的边序列,并输出最小生成树的权值。若G没有生成树,则输出-1.#include<iostream>#include<vector>#include<algorithm>using namespac原创 2022-01-04 16:44:47 · 908 阅读 · 0 评论 -
二部图的判定
题目:判断无向图G是否为二部图输入:正整数n,代表无向图G的阶数;随后的n行代表G的邻接矩阵,每行有n个数据,每个数据以空格分隔。其中每个数据表示顶点vi邻接顶点vj边的条数。输出:若为树,输出yes;否则,输出no。#include<iostream>#include<queue>using namespace std;const int N = 100;class Graph{private: int n; int matrix[N][N];pu原创 2022-01-04 16:13:09 · 3024 阅读 · 0 评论 -
求命题公式的主范式
求命题公式的主范式实现功能:输入命题公式的合式公式,求出公式的真值表,并输出该公式的主合取范式和主析取范式。输入:命题公式的合式公式输出:公式的主析取范式和主析取范式,输出形式为:“ mi ∨ mj ; Mi ∧ Mj” ,极小项和 ∨ 符号之间有一个空格,极大项和 ∧ 符号之间有一个空格;主析取范式和主合取范式之间用“ ; ”隔开,“ ; ”前后各有一个空格。 永真式的主合取范式为 1 ,永假式的主析取范式为 0 。输入公式的符号说明:! 非,相当于书面符号中的 “ ¬ ”& 与,相当原创 2021-02-05 23:17:54 · 851 阅读 · 0 评论