剪邮票
现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图2.jpg】,【图3.jpg】中,粉红色所示部分就是合格的剪取
请你计算,一共有多少种不同的剪取方法。
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
思路:直接搜索是不大可能的,我们可以把它转变成全排列问题。因为一共12张,需要5张,我们可以创建一个数组,存放5个1和7个0,然后对其进行全排列(这里值得注意的是普通的全排列对重复的数字会产生重复的全排列,简单起见,我们使用c++里面STL中的next_permutation()),然后将其转化成二维数组,然后用dfs搜索看看有几个连通块,只有一个连通块就是一个可行的方案。
解析
C++ 题解
#include <bits/stdc++.h>
using namespace std;
int n = 3, m = 4, Map[3][4], Ans;
int a[] = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1};
int u[4] = {-1, 0, 0, 1},
v[4] = {0, -1, 1, 0};
void dfs(int x, int y) {
Map[x][y] = 0;
for(int i=0; i<4; ++i) {
int xx = x + u[i];
int yy = y + v[i];
if(xx>=0 && xx<3 && yy>=0 && yy<4 && Map[xx][yy]==1)
dfs(xx, yy);
}
}
bool check() {
for(int i=0; i<3; ++i)
for(int j=0; j<4; ++j)
Map[i][j] = a[4*i+j];
int cnt = 0;
for(int i=0; i<3; ++i)
for(int j=0; j<4; ++j) {
if(Map[i][j] == 1) {
dfs(i, j);
cnt++;
}
}
if(cnt == 1) return true;
return false;
}
void work() { // 利用next_permutation生成不重复的排列
do {
if(check()) Ans++;
}while(next_permutation(a, a+12));
}
int main() {
work();
printf("%d\n", Ans);
return 0;
}
答案:116
Java题解
public static void main(String[] args) {
for(int i=1;i<=12;i++) {
for(int j=i+1;j<=12;j++) {
for(int k=j+1;k<=12;k++) {
for(int x=k+1;x<=12;x++) {
for(int y=x+1;y<=12;y++) {
vis[i]=vis[j]=vis[k]=vis[x]=vis[y]=true;
t=0;
dfs(i);
if(t==5)
ans++;
vis[i]=vis[j]=vis[k]=vis[x]=vis[y]=false;
}
}
}
}
}
System.out.println(ans);
}
// static char[] a = new char[] {'A','B','C','D','E','F','G','H','I','J','K','L'};
// static HashSet<String> set = new HashSet<>();
static boolean[] vis = new boolean[13];
static int ans = 0;
static int t=0;
static void dfs(int x) {
vis[x]=false;
t++;
if(x!=1 && x!=5 && x!=9 && vis[x-1])
dfs(x-1);
if(x!=4 && x!=8 && x!=12 && vis[x+1])
dfs(x+1);
if(x!=1 && x!=2 && x!=3 && x!=4 && vis[x-4])
dfs(x-4);
if(x!=9 && x!=10 && x!=11 && x!=12 && vis[x+4])
dfs(x+4);
}
}