进程与线程

进程与线程

学习路线和学习重点

1. 学习路线

  1. 基础概念

    • 理解进程和线程的基本概念。
    • 学习操作系统中进程和线程的管理机制。
    • 理解Python中的GIL及其影响。
  2. 基本操作

    • 学习如何创建、启动、终止线程和进程。
    • 理解线程和进程的生命周期及其状态转换。
  3. 线程编程

    • 学习threading模块中的基本用法。
    • 理解线程同步和互斥(锁、信号量、条件变量)。
    • 学习线程间通信(事件、队列)。
  4. 进程编程

    • 学习multiprocessing模块中的基本用法。
    • 理解进程间通信(队列、管道、共享内存)。
    • 学习使用管理器共享复杂数据。
  5. 高级应用

    • 学习线程和进程池的使用。
    • 理解并发编程中的性能调优和问题排查。
    • 实践并发编程的设计模式和最佳实践。
  6. 项目实践

    • 结合实际项目进行线程和进程编程。
    • 学习如何调试并优化多线程和多进程程序。

2. 学习重点

线程编程
  1. 线程创建与管理

    • 使用threading.Thread创建和启动线程。
    • 使用join()方法等待线程完成。
    • 理解线程的生命周期。
  2. 线程同步

    • 使用threading.Lock确保线程安全。
    • 理解RLockSemaphoreCondition等同步机制。
    • 使用threading.Event实现线程间通信。
  3. 线程池

    • 使用concurrent.futures.ThreadPoolExecutor管理线程池。
    • 提交任务并获取结果。
  4. 实战练习

    • 编写一个简单的多线程爬虫。
    • 实现一个多线程的生产者-消费者模型。
进程编程
  1. 进程创建与管理

    • 使用multiprocessing.Process创建和启动进程。
    • 使用join()方法等待进程完成。
    • 理解进程的生命周期。
  2. 进程间通信

    • 使用multiprocessing.Queue在进程间传递数据。
    • 使用multiprocessing.Pipe实现双向通信。
    • 使用multiprocessing.Valuemultiprocessing.Array共享数据。
  3. 进程池

    • 使用concurrent.futures.ProcessPoolExecutor管理进程池。
    • 提交任务并获取结果。
  4. 实战练习

    • 实现一个多进程的矩阵计算任务。
    • 编写一个多进程的数据处理管道。

线程(Thread)

1. 线程基础

  • 线程(Thread)

    • 线程是进程中的一个执行单元,能够与其他线程共享进程的内存和资源。
    • 在同一个进程内,可以有多个线程同时执行,每个线程有自己的运行栈和程序计数器。
  • GIL(Global Interpreter Lock)

    • Python解释器中的全局解释器锁,确保在任意时刻只有一个线程在执行Python字节码,限制了多线程在多核CPU上的并行执行。
    • 虽然GIL限制了Python在多核CPU上的性能提升,但对于I/O密集型任务,多线程仍然能够提高性能。

2. threading模块

  • 创建线程

    • 使用threading.Thread类创建线程,可以通过传入目标函数和参数来启动线程。
    • 线程对象的start()方法启动线程,join()方法等待线程完成。
    import threading
    
    def worker():
        print("Thread is working")
    
    thread = threading.Thread(target=worker)
    thread.start()
    thread.join()
    
  • 线程类继承

    • 通过继承threading.Thread类创建线程,重写run()方法定义线程的执行逻辑。
    import threading
    
    class MyThread(threading.Thread):
        def run(self):
            print("Thread is working")
    
    thread = MyThread()
    thread.start()
    thread.join()
    
  • 线程同步

    • 锁(Lock):使用threading.Lock确保一次只有一个线程可以访问某个资源。
    • 条件变量(Condition):使用threading.Condition实现线程之间的复杂同步。
    • 事件(Event):使用threading.Event实现线程之间的简单通信。
    import threading
    
    lock = threading.Lock()
    counter = 0
    
    def increment():
        global counter
        with lock:
            counter += 1
    
    threads = [threading.Thread(target=increment) for _ in range(10)]
    for thread in threads:
        thread.start()
    for thread in threads:
        thread.join()
    
    print(counter)
    

3. 学习资源

进程(Process)

1. 进程基础

  • 进程(Process)

    • 进程是操作系统分配资源的基本单位,每个进程有独立的内存空间。
    • 进程间通信(IPC)通过管道、消息队列、共享内存等方式实现。
  • 进程生命周期

    • 进程在运行中经历新建、就绪、运行、阻塞和终止等状态。
    • 进程的切换由操作系统调度器控制,确保系统资源的合理分配。

2. multiprocessing模块

  • 创建进程

    • 使用multiprocessing.Process类创建进程,可以通过传入目标函数和参数来启动进程。
    • 进程对象的start()方法启动进程,join()方法等待进程完成。
    import multiprocessing
    
    def worker():
        print("Process is working")
    
    process = multiprocessing.Process(target=worker)
    process.start()
    process.join()
    
  • 进程间通信

    • 队列(Queue):使用multiprocessing.Queue在进程间传递数据。
    • 管道(Pipe):使用multiprocessing.Pipe提供双向通信通道。
    import multiprocessing
    
    def worker(queue):
        queue.put("Data from process")
    
    queue = multiprocessing.Queue()
    process = multiprocessing.Process(target=worker, args=(queue,))
    process.start()
    process.join()
    print(queue.get())
    
  • 共享数据

    • 共享内存multiprocessing.Valuemultiprocessing.Array 用于在进程间共享数据。
    • 管理器(Manager)multiprocessing.Manager提供更高层次的数据共享和同步。
    import multiprocessing
    
    def worker(shared_counter):
        with shared_counter.get_lock():
            shared_counter.value += 1
    
    counter = multiprocessing.Value('i', 0)
    processes = [multiprocessing.Process(target=worker, args=(counter,)) for _ in range(10)]
    
    for process in processes:
        process.start()
    for process in processes:
        process.join()
    
    print(counter.value)
    

3. 学习资源

线程与进程的区别与使用场景

线程(Thread)

  • 优点

    • 线程创建和销毁的开销较小。
    • 线程之间可以共享内存,数据传递快。
    • 适用于I/O密集型任务,如文件读写、网络请求等。
  • 缺点

    • 受限于GIL,无法在多核CPU上实现真正的并行计算。
    • 多线程编程容易出现竞争条件、死锁等问题。

进程(Process)

  • 优点

    • 进程拥有独立的内存空间,安全性高。
    • 适用于CPU密集型任务,能够充分利用多核CPU的性能。
    • 不受GIL的限制,支持真正的并行计算。
  • 缺点

    • 进程创建和销毁的开销较大。
    • 进程间通信(IPC)相对复杂,数据传递速度较慢。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值