有点难的二分查找LeetCode题 | 区间内查询数字的频率 | LeetCode-2080 | 二分查找

🙋大家好!我是毛毛张!
🌈个人首页: 神马都会亿点点的毛毛张

🍎二分查找你学废了吗?快来看看这道题如何使用二分查找解决吧!
🍒建议先看完毛毛对二分查找的细节总结再来看这道题目:全网超全的二分查找细节总结 | 二分查找


LeetCode链接:2080. 区间内查询数字的频率

1.题目描述

请你设计一个数据结构,它能求出给定子数组内一个给定值的 频率

子数组中一个值的 频率 指的是这个子数组中这个值的出现次数。

请你实现 RangeFreqQuery 类:

  • RangeFreqQuery(int[] arr) 用下标从 0 开始的整数数组 arr 构造一个类的实例。
  • int query(int left, int right, int value) 返回子数组 arr[left...right]value频率

一个 子数组 指的是数组中一段连续的元素。arr[left...right] 指的是 nums 中包含下标 leftright 在内 的中间一段连续元素。

示例 1:

输入:
["RangeFreqQuery", "query", "query"]
[[[12, 33, 4, 56, 22, 2, 34, 33, 22, 12, 34, 56]], [1, 2, 4], [0, 11, 33]]
输出:
[null, 1, 2]

解释:
RangeFreqQuery rangeFreqQuery = new RangeFreqQuery([12, 33, 4, 56, 22, 2, 34, 33, 22, 12, 34, 56]);
rangeFreqQuery.query(1, 2, 4); // 返回 1 。4 在子数组 [33, 4] 中出现 1 次。
rangeFreqQuery.query(0, 11, 33); // 返回 2 。33 在整个子数组中出现 2 次。

提示:

  • 1 < = a r r . l e n g t h < = 1 0 5 1 <= arr.length <= 10^5 1<=arr.length<=105
  • 1 < = a r r [ i ] , v a l u e < = 1 0 4 1 <= arr[i], value <= 10^4 1<=arr[i],value<=104
  • 0 <= left <= right < arr.length
  • 调用 query 不超过 1 0 5 10^5 105 次。

2.题解

2.1 哈希集合+二分查找

class RangeFreqQuery {
    // 创建一个映射,用于存储每个数字在数组中的出现位置
    private Map<Integer, List<Integer>> map = new HashMap<>();

    // 构造函数,用于初始化对象并构建map
    public RangeFreqQuery(int[] arr) {
        // 遍历数组,记录每个数字出现的位置
        for (int i = 0; i < arr.length; i++) {
            int num = arr[i];
            // 如果map中没有该数字,初始化一个新的列表
            if(!map.containsKey(num)) map.put(num,new ArrayList<Integer>());
            map.get(num).add(i);
        }
    }

    // 查询函数,返回值为目标数字在指定范围内的出现次数
    public int query(int left, int right, int value) {
        if (!map.containsKey(value)) return 0;// 如果map中没有目标数字,直接返回0
        List<Integer> list = map.get(value);// 获取目标数字的所有出现位置列表
        
        // 使用二分查找找到左边界和右边界对应的索引
        int leftIndex = binarySearch(list, left, true);
        int rightIndex = binarySearch(list, right, false);
        
        // 计算并返回目标数字在指定范围内的出现次数
        return rightIndex - leftIndex + 1;
    }

    // 二分查找辅助函数,用于查找目标值的左边界或右边界索引
    private int binarySearch(List<Integer> list, int target, boolean findFirst) {
        int min = 0, max = list.size() - 1;
        while (min <= max) {
            int mid = min + (max - min) / 2;
            // 根据标志位选择合适的边界,继续缩小查找范围
            if (target < list.get(mid) || (findFirst && target <= list.get(mid))) {
                max = mid - 1;
            } else {
                min = mid + 1;
            }
        }
        // 返回左边界或右边界对应的索引
        return findFirst ? min : min - 1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神马都会亿点点的毛毛张

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值