🌈个人首页: 神马都会亿点点的毛毛张
🍎二分查找你学废了吗?快来看看这道题如何使用二分查找解决吧!
🍒建议先看完毛毛对二分查找的细节总结再来看这道题目:全网超全的二分查找细节总结 | 二分查找
1.题目描述
请你设计一个数据结构,它能求出给定子数组内一个给定值的 频率 。
子数组中一个值的 频率 指的是这个子数组中这个值的出现次数。
请你实现 RangeFreqQuery
类:
RangeFreqQuery(int[] arr)
用下标从 0 开始的整数数组arr
构造一个类的实例。int query(int left, int right, int value)
返回子数组arr[left...right]
中value
的 频率 。
一个 子数组 指的是数组中一段连续的元素。arr[left...right]
指的是 nums
中包含下标 left
和 right
在内 的中间一段连续元素。
示例 1:
输入:
["RangeFreqQuery", "query", "query"]
[[[12, 33, 4, 56, 22, 2, 34, 33, 22, 12, 34, 56]], [1, 2, 4], [0, 11, 33]]
输出:
[null, 1, 2]
解释:
RangeFreqQuery rangeFreqQuery = new RangeFreqQuery([12, 33, 4, 56, 22, 2, 34, 33, 22, 12, 34, 56]);
rangeFreqQuery.query(1, 2, 4); // 返回 1 。4 在子数组 [33, 4] 中出现 1 次。
rangeFreqQuery.query(0, 11, 33); // 返回 2 。33 在整个子数组中出现 2 次。
提示:
- 1 < = a r r . l e n g t h < = 1 0 5 1 <= arr.length <= 10^5 1<=arr.length<=105
- 1 < = a r r [ i ] , v a l u e < = 1 0 4 1 <= arr[i], value <= 10^4 1<=arr[i],value<=104
0 <= left <= right < arr.length
- 调用
query
不超过 1 0 5 10^5 105 次。
2.题解
2.1 哈希集合+二分查找
class RangeFreqQuery {
// 创建一个映射,用于存储每个数字在数组中的出现位置
private Map<Integer, List<Integer>> map = new HashMap<>();
// 构造函数,用于初始化对象并构建map
public RangeFreqQuery(int[] arr) {
// 遍历数组,记录每个数字出现的位置
for (int i = 0; i < arr.length; i++) {
int num = arr[i];
// 如果map中没有该数字,初始化一个新的列表
if(!map.containsKey(num)) map.put(num,new ArrayList<Integer>());
map.get(num).add(i);
}
}
// 查询函数,返回值为目标数字在指定范围内的出现次数
public int query(int left, int right, int value) {
if (!map.containsKey(value)) return 0;// 如果map中没有目标数字,直接返回0
List<Integer> list = map.get(value);// 获取目标数字的所有出现位置列表
// 使用二分查找找到左边界和右边界对应的索引
int leftIndex = binarySearch(list, left, true);
int rightIndex = binarySearch(list, right, false);
// 计算并返回目标数字在指定范围内的出现次数
return rightIndex - leftIndex + 1;
}
// 二分查找辅助函数,用于查找目标值的左边界或右边界索引
private int binarySearch(List<Integer> list, int target, boolean findFirst) {
int min = 0, max = list.size() - 1;
while (min <= max) {
int mid = min + (max - min) / 2;
// 根据标志位选择合适的边界,继续缩小查找范围
if (target < list.get(mid) || (findFirst && target <= list.get(mid))) {
max = mid - 1;
} else {
min = mid + 1;
}
}
// 返回左边界或右边界对应的索引
return findFirst ? min : min - 1;
}
}