自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

XUE FENG!的博客

美是第一位的考验,世界上没有丑陋的数学的永久地位。

  • 博客(26)
  • 收藏
  • 关注

原创 2023 Microsoft Edge 新增的分屏功能

2023 Microsoft Edge 新增的分屏功能

2023-05-08 16:41:08 401 1

原创 基于ChatGPT的新一代辅助编程神器——Cursor

Cursor 这是一款与OpenAI合作并且基于GPT3的新一代辅助编程神器。不用科学上网,它能帮助我们生成代码。

2023-05-03 11:46:17 4693

原创 新的代数计算软件包——Magma

Magma是一款由悉尼大学数学与统计学系计算代数学小组开发的功能强大的代数计算程序包,该软件专门解决代数系统中的数论、代数几何和代数组合学的计算问题。

2023-04-04 16:07:14 2538 5

原创 Bernstein–von Mises类型的定理

Bernstein–von Mises类型的定理指出,可用于采样的数据越多,先验概率对预测模型的影响就越小,至少对于具有特定约束集的常见贝叶斯推理模型是这样。随着数据池的扩大,后验分布变得更加独立于先验概率假设,后验曲线看起来就像(渐近于)从最大似然估计器绘制的抽样分布。

2023-03-26 14:04:58 340

原创 机器学习中的信息论基础——熵、条件熵、联合熵、相对熵、互信息及其性质

抛一枚有均匀正反面的硬币,和掷一个均匀六面的骰子,哪一种试验的不确定性更强一点呢?粗略地看,我们感觉抛硬币这个试验的不确定性会更少一点,因为硬币毕竟仅有2个结果,而骰子有6个结果,但是对于这样一个直觉的事实,我们怎么进行量化从而在数字层面上反映两个随机变量的不确定性的大小关系呢?Shannon提出了熵的概念,解决了以上这个问题。对于上述离散型随机事件,可以用离散熵定义其不确定性:熵是一个随机变量不确定性的度量,对于一个离散型随机变量X∼pxX∼pxHX−∑x∈χpx。

2023-03-15 10:00:01 305

原创 主动学习(最优实验设计)

主动学习是机器学习的一个子领域,在统计学领域也叫查询学习或最优实验设计,旨在以尽可能少的标注样本达到目标性能。

2023-03-06 20:30:53 378

原创 如何在MATLAB上使用GUP加速跑代码

如何在MATLAB上使用GUP加速跑代码

2023-03-01 10:35:51 5593

原创 自适应网格精细的贝叶斯相位估计

介绍了一种新的基于自适应网格精细的贝叶斯相位估计技术。该方法使用网格细化和单元合并策略自动选择精确相位估计所需的粒子数,使得每一步所需的粒子总数最小。

2023-02-03 10:41:14 302

原创 参数估计——基于网格的方法

近似后验分布的最简单的数值方法是将所有计算基于在规则网格上评估的(不一定是归一化的)密度值阵列。分布上的积分近似为简单的和,计算其他标准导出量相当简单。

2023-01-31 15:20:49 487

原创 MATLAB如何绘制折线图和美化折线图

在写论文的时候,我们直接用MATLAB绘制的图像和大佬的比起来总是差很远,现在我们来看如何美化科研论文的图片。

2022-12-16 15:46:34 7433

原创 近似算法之——顶点覆盖的原始对偶算法

顶点覆盖的原始对偶算法起源于Bar Yehuda和Even(1981)[1] ,尽管它最初并没有被描述为一个原始-对偶算法,但回想起来,这是第一次在近似算法中使用该模式。

2022-11-28 10:47:30 1811

原创 近似算法中的技巧之一原始对偶模式

原对偶模式(The Primal-Dual Method)起源于精确算法的设计。它的优点在于,它避免了求原始线性规划问题的最优解所耗费的大量时间,从而减少了算法的运行时间。

2022-11-28 09:45:04 1141

原创 用MATLAB彻底搞懂遗传算法原理+代码讲解+具体例子

跟着例子来学习遗传算法,比如计算 y=x.*sin(3*pi.*x);的最优值

2022-08-06 10:51:07 10834 3

原创 无法从 gpuArray 转换为 double

轻松解决bug

2022-08-06 09:48:45 1961 1

原创 Matlab中持久变量(persistent)在Python中的理解

语法persistent var1 ... varN说明persistent 将变量var1.....varN 声明为持久变量。持久变量是声明它们的函数的局部变量;但其值保留在对该函数的各次调用所使用的内存中,Matlab命令行和其它函数中的代码不能更改持久变量。当 MATLAB 首次遇到特定 persistent 语句时,它将持久变量初始化为空矩阵 ([])。在您清除或修改内存中的函数时,MATLAB 会清除持久变量。示例函数调用计数在当前工作文件夹中创建函数 myFun。每次调

2022-04-02 11:00:15 5776 2

原创 Matlab中的gather函数是个啥玩意

这里简单的说一下,gather 就是执行排队的运算后,将tall数组收集到内存中。语法Y = gather(X)[Y1,Y2,Y3,...] = gather(X1,X2,X3,...)说明Y=gather(X)对尚未计算,但需要计算的tall数组x执行所有必须的排队运算,然后将Y收集到内存中。如果gather的计算结果太大,可能导致 MATLAB®内存不足。如果您不确定结果是否能够完全放入内存,请使用gather(head(X))或gather(tail(X))执行...

2022-03-30 21:50:54 2963

原创 参数辨识的简单理解

1. 参数辨识技术,是一种将理论模型与试验数据结合起来用于预测的技术。参数辨识根据实验数据和建立的模型来确定一组模型的参数,使得由模型计算得到的数值结果能最好地拟合测试数据(可以看做是一种曲线拟合问题)从而可以对未知过程进行预测,提供一定的理论指导。2.在具体研究中,首先建立一个粗略的模型,用这个模型对试验测量结果进行预测当计算得到的数值结果与测试值之间的误差较大时,就认为该数学模型与实际的过程不符或者差距较大,进而修改模型,重新选择修改。当预测结果与实测结果相符合,认为此模型具有较高的可信度。.

2022-03-26 15:36:11 9407 1

原创 np.where(condition)与np.where(condition,X,Y)

1. np.where(condition)a=np.where(b) 目的是找到满足条件的(b)的索引位置(a),这里a,b都是数组类型。找个简单的例子。import numpy as npn=np.array([1,2,4,5]) m=np.array([1,2,3,5])b=(m!=n[0]) #条件print(b)'''输出b[False True True True] #这是一个数组。 根据判断条件m中的元素不等于a的第一个元素,返回布尔类型的

2022-03-26 08:47:30 934

原创 Numpy给数组增加维度的操作

不说其他的,直接给个例子就懂了。a是一个一维数组a = np.array([0.0, 10.0, 20.0, 30.0])print(a.shape,a[:, np.newaxis],a[:, np.newaxis].shape)#输出(4,) [[ 0.] [10.] [20.] [30.]] (4, 1)表示给a增加一个维度,4行1列,换个方向呢?print(a.shape,a[np.newaxis,:],a[ np.newaxis,:].shape)#输出

2022-03-23 21:42:08 7545

原创 二项分布(np.random.binomial),搞它就完了

二项分布(np.random.binomial),搞它就完了!首先我们的搞清楚伯努利分布和二项分布,我们先找个例子,选西瓜,待我细细道来。伯努利分布选一个西瓜,选到好瓜的概率为,选到坏瓜的概率为1-p。这个就是伯努利分布,而选一次西瓜就是伯努利试验。n重伯努利试验简单地说,就是把伯努利试验重复n次,也就是你选了几次西瓜。二项分布n重伯努利试验「成功」次数的离散概率分布,这里的「成功」假设是选到好瓜。举个例子:选西瓜n次(n重伯努利试验),成功次数(选到好瓜的个数)为k次的概率就是「一个」二项分

2022-03-23 10:44:13 6362

原创 如何理解数组的行数和列数,差点搞蒙?

最近接触数组,就这个行和列有时候傻傻分不清楚,因为维度太高。今天看一个简单的小例子,即可搞懂咋回事!import numpy as npnp.random.seed(10)a=np.random.randint(1,10,[5,3])print(a,np.amax(a,axis=0),a.argmax(axis=0)) print(a,np.amax(a,axis=1),a.argmax(axis=1))'''输出:a=[[5 1 2][1 2 9][1 9 7][5 4 ...

2022-03-22 19:32:19 2720

原创 心理测量函数(Psychometric Function)

1.心理测量函数(PF)是一种心理学研究中表示自变量与因变量之间变化关系的数学函数式。如在智力、年龄、经验等条件相等的情形下,学习成绩是练习次数的函数,即学习成绩的好坏随练习次数的变化而变化。心理测量函数,即绝对阀限研究结果的总结。表示每一种刺激强度(横坐标)下刺激被察觉到的百分数(纵坐标)的曲线。2.α:决定函数在坐标轴上的位置 β:决定曲线的斜率.我们永远不会知道他两的真实的值,而拟合曲线的过程就是为了发现这两个参数的值,并且通过这两个参数可以得出一条曲线,它能够很好的匹配实验数据。

2022-03-06 15:59:04 2567

原创 拟阵的秩函数

设E是有限元素的集合,M是E上的拟阵。拟阵M的秩函数是一个函数,使对任意的有。

2021-10-24 19:40:39 423

原创 比特(BIT)

比特(BIT,Binary digit),计算机专业术语,是信息量单位,是由英文BIT音译而来。同时也是二进制数字中的位,信息量的度量单位,为信息量的最小单位。在需要作出不同选择的情况下把备选的刺激数量减少半所必需的信息。即信号的信息量(比特数)等于信号刺激量以2为底数的对数值。L.哈特莱1928年认为对信息量选用对数单位进行度量最合适。概念(1) 计算机专业术语,是信息量单位,是由英文BIT音译而来。二进制数的一位所包含的信息就是一比特,如二进制数0100就是4比...

2021-10-23 20:42:40 1573

原创 对子模函数(submodular function)的一些理解

1、子模函数是一个集合函数,又减小回转属性(diminishing returns)。子模函数适用于多种应用,包括近似算法,博弈理论,和电网络。2、标准定义:如果是一个集合,一个子模函数是一个集合函数,,(就是的幂集到实数集R的映射),满足下列等式:(1)对所有,其中,则对所有,有 (2)对所有有(3)对所有,我们有 3、边际效用递减定律 ...

2021-10-13 18:33:04 5542

原创 拟阵的基本概念

1.基 对于拟阵M=(S,),若BI,但不存在,使 ,则称B为拟阵M的基,也叫作拟阵的极大独立集。B(M)表示所有基的集合。即B属于I,找不到包含B的集合属于I。2. 圈 若I,但任意的有,则称C是拟阵M的圈,即圈是拟阵的极小相关集。除了C不属于I,它的子集都属于I。...

2021-10-12 16:06:33 1085

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除