1、计算机、人工智能、大数据优秀毕业设计
——传统的水平框目标检测是毕业设计的香饽饽,毕竟运行起来真的非常的简单,所以你的同学当中不乏有很多做火灾检测、行人检测、行车标志检测等等的,并且都是基于Yolo模型的。然而,这些项目做来做去想必是没什么新鲜的地方的。
——进一步的,有很多同学做的基于深度学习的数据自动标注工具,但是这个非常难以解释得通,你用交通数据集训练的模型然后又用于交通情况的自动标注?不觉得有点违和嘛?
——基于此,我介绍一下本科同学很少涉及的旋转目标检测, 其主要特点是会估计生成一个带有方向信息的旋转目标框并且具有更少的冗余背景区域。旋转框是介于水平框与像素级实例分割的中间表现形式,其既不像实例分割般需要极其高的标注代价,与水平框相比又更具有表达能力,有效的平衡了标注代价与表达能力。
——尽管旋转目标检测有如此多的优点,但是许多现有的目标检测数据集均是用成本更低的水平框进行标注的,这导致暂时无法将这些数据集直接用到旋转目标检测器的训练。数据集的全部重新标注是一件费事费力费钱的事情,那如果可以利用深度学习模型将水平框自动转换为旋转框,即使只起到一个辅助标注的作用,还是可以节省很多钱的。
方法介绍
——本项目基于H2RBox模型:link,在其基础上对骨干网络、特征提取网络、损失函数等方面进行相应的改进,模型在dota数据集上提升明显!
——本文设计了若干组消融对比实验,事实证明改进效果显著,达到了辅助数据标注的要求,其在验证集上的结果也不错,仅稍低于全监督模型。(验证集为本项目手动划分,没有经过dota官方的测试)
——上面的测试结果为map50的分数,只是辅助数据标注的话,map50就可以衡量了。可以将map值大概等效成水平框到旋转框的转换效率,有77.7%的转换率已经可以省下很多钱了。而根据国际惯例,肯定要设计一个测试集的,我们用测试集来观察模型的泛化能力,其实全监督的FCOS模型还是比弱监督的强很多的。
旋转框标注方法设计
其实,大部分本科生做到上面的模型改进就差不多了,但是我知道有的学校一定要你做一个软件出来可视化一下你的模型嘛。
现有开源旋转框标注软件及标注方法研究
肯定有比你好的方法,你挑比你的方法更差的方法写在自己的论文上,突出你自己的方法!!
——RolabelImg基于Python中的PyQt库而建立且专注于旋转框的标注,由于其安装较为容易,是目前Github上获得收藏数最多的旋转框标注软件。其标注一个旋转框总共可以拆分为3步:首先,在待标注目标上绘制一个水平框并设置目标的名称;其次,使用相应的快捷键进行方向的调整;最后,使用鼠标对旋转框进行大小和位置的调整。
———与RolabelImg不同,LabelImg支持适用于图像、文本、超文本、音频、视频和时间序列数据的标注,是集大成者的标注软件。对于其图像部分,LabelImg仅支持水平框与多边形标注,不直接支持旋转框标注。但网络上有网友分享的“十字标注法”[27]亦可实现使用LabelImg标注旋转框。“十字标注法”主要使用的为多边形标注工具,具体标注过程同样可分为三步:首先,在待标注目标的周围交叉标注5个点,使标注图形呈交叉封闭状态;其次,将标注好的文件进行导出并使用最小外接矩形计算器将标注图像转为旋转框;最后,将转换后的文件再次导入LabelImg中进行位置的微调(无法对方向进行微调)。
旋转框绘制方法设计
——其实,我设计的方法也只是基于简单的三角关系,但是确实比其它的更直观,所以也有部分学者使用了。
代码、数据集、论文原文、答辩PPT
详细请看:link