DP | 24 279.完全平方数 *

本文介绍了如何运用动态规划(DP)方法解决寻找构成正整数n的完全平方数之和的最小数量问题。通过确定dp数组、递推公式、初始化、遍历顺序及举例推导,展示了C++实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文记录的是刷题过程中的重要概念和笔记。如有侵权,请联系删除。

279.完全平方数

力扣题目链接(opens new window)

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9
提示:

1 <= n <= 10^4

思路

把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

DP五部曲

1.确定dp数组(dp table)以及下标的含义

2.递推公式

3.dp数组初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?
每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。

4.遍历顺序

如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。

本题求最小个数,所以都是可以的!

外层遍历背包,内层遍历物品的代码:

vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
    for (int j = 1; j * j <= i; j++) { // 遍历物品
        dp[i] = min(dp[i - j * j] + 1, dp[i]);
    }
}

5.举例推导

C++

// 版本二
class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n+1,INT_MAX);
        dp[0]=0;
        dp[1]=1;  // 因为使用数学加速,导致1不满足i<=n/2
        for(int i=1;i<=n/2;i++){  // 平方数从1开始
            for(int j=i*i;j<=n;j++){
                // if(dp[j-i*i]!=INT_MAX) 可以不用,肯定之前赋值过了
                    dp[j]=min(dp[j],dp[j-i*i]+1);
            }
        }
        return dp.back();
    }
};
  • if(dp[j-i*i]!=INT_MAX) 可以不用,肯定之前赋值过了。之前需要比较是因为当时硬币的只是离散的,而在这里遍历的时候,背包大小是连续的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值