本文记录的是刷题过程中的重要概念和笔记。如有侵权,请联系删除。
279.完全平方数
力扣题目链接(opens new window)
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
提示:
1 <= n <= 10^4
思路
把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?
DP五部曲
1.确定dp数组(dp table)以及下标的含义
2.递推公式
3.dp数组初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
非0下标的dp[j]应该是多少呢?
每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。
4.遍历顺序
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
本题求最小个数,所以都是可以的!
外层遍历背包,内层遍历物品的代码:
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
for (int j = 1; j * j <= i; j++) { // 遍历物品
dp[i] = min(dp[i - j * j] + 1, dp[i]);
}
}
5.举例推导
C++
// 版本二
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n+1,INT_MAX);
dp[0]=0;
dp[1]=1; // 因为使用数学加速,导致1不满足i<=n/2
for(int i=1;i<=n/2;i++){ // 平方数从1开始
for(int j=i*i;j<=n;j++){
// if(dp[j-i*i]!=INT_MAX) 可以不用,肯定之前赋值过了
dp[j]=min(dp[j],dp[j-i*i]+1);
}
}
return dp.back();
}
};
- if(dp[j-i*i]!=INT_MAX) 可以不用,肯定之前赋值过了。之前需要比较是因为当时硬币的只是离散的,而在这里遍历的时候,背包大小是连续的。