本文记录的是刷题过程中的重要概念和笔记。如有侵权,请联系删除。
739. 每日温度
力扣题目链接(opens new window)
请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。
例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。
提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数。
思路
暴力解法
两层for循环,把至少需要等待的天数就搜出来了。时间复杂度是O(n^2)
单调栈基础知识
在使用单调栈的时候首先要明确如下几点:
1 单调栈里存放的元素是什么?
单调栈里只需要存放元素的下标i就可以了,如果需要使用对应的元素,直接T[i]就可以获取。
2 单调栈里元素是递增呢? 还是递减呢?
注意以下讲解中,顺序的描述为 从栈头到栈底的顺序,因为单纯的说从左到右或者从前到后,不说栈头朝哪个方向的话,大家一定比较懵。
3 适用情形
单调栈就是保持栈内元素有序。
通常是一维数组,要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置,此时我们就要想到可以用单调栈了。
目的就是把还没有处理的数据先放入栈中,等到符合条件的时候再拿出来进行处理。
单调栈法
- vector没有push_front(), pop_front()等方法
单调栈的本质是空间换时间,因为在遍历的过程中需要用一个栈来记录右边第一个比当前元素高的元素,优点是整个数组只需要遍历一次。
这里我们要使用递增循序(再强调一下是指从栈头到栈底的顺序)
当前遍历的元素T[i]小于栈顶元素T[st.top()]的情况
当前遍历的元素T[i]等于栈顶元素T[st.top()]的情况
当前遍历的元素T[i]大于栈顶元素T[st.top()]的情况
精简:
// 版本二
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& T) {
stack<int> st; // 递增栈
vector<int> result(T.size(), 0);
for (int i = 0; i < T.size(); i++) {
while (!st.empty() && T[i] > T[st.top()]) { // 注意栈不能为空
result[st.top()] = i - st.top();
st.pop();
}
st.push(i);
}
return result;
}
};
时间复杂度:O(n)
空间复杂度:O(n)
精简的代码是直接把情况一二三都合并到了一起,其实这种代码精简是精简,但思路不是很清晰。