#Python&&pyquery&car之家案例

查看页面源码

在这里插入图片描述

案例

"""
1. 提取页面源代码
2. 解析页面源代码,提取数据

"""
import requests
from pyquery import PyQuery
f = open("qingchezhijia.csv",mode='w',encoding='utf-8') # 创建文件

def get_page_source(url):  # 定义函数 访问页面
    resp = requests.get(url)
    resp.encoding = "gbk"
    # print(resp.text)
    return resp.text


def parse_page_source(html):   # 解析 并找准定位
    doc =PyQuery(html)
    mt_list = doc(".mt-10").items()  # class ="mt-10"
    for mt in mt_list: # 拿到每一个

        # 判断是否有汽车经销商
        if not mt("div >dl:nth-child(3)>dt:contains(购车经销商)"):
            # 向 地点 后添加购车经销商进去
            mt("div >dl:nth-child(2)").after(PyQuery("""<dl class="choose-dl">
                        <dt>购车经销商</dt>
                        <dd>
                            <a href="###" class="js-dearname" data-val="81115,51982" data-evalid="4033271" target="_blank">
                                &nbsp;
                            </a>
                        </dd>
                    </dl>"""))

        # 提取购买的车型
        # 想要在已经提取的内容中获得第一个怎么办? .eq(0)
        # nth - child(1) 在css进行选择的时候,选取第1个位置的内容
        car =mt("div>dl:nth-child(1)>dd").eq(0).text().replace("\n","").replace(" ","")
        place = mt("div>dl:nth-child(2)>dd").eq(0).text()
        time = mt("div>dl:nth-child(4)>dd").eq(0).text()
        price = mt("div>dl:nth-child(5)>dd").eq(0).text().replace("万元","")
        youhao = mt("div>dl:nth-child(6)>dd >p:nth-child(1)").eq(0).text().replace("升/百公里","")
        kilometer = mt("div>dl:nth-child(6)>dd >p:nth-child(2)").eq(0).text().replace("公里","")
        # for i in range(8):
        #     other = mt("div>div>dl>dd").text().split()
        #     i+=1
        other = mt("div>div>dl>dd").text().split()
        # kongjian = mt("div>dl:nth-child(7)>dd").eq(0).text()
        # kongjian = mt("div>dl:nth-child(7)>dd >p:nth-child(1)")
        # kongjian = mt("div>div>dl")[1].text()
        # print(car,other)
        # 存储到文件中.....
        f.write(f"购买车型:{car},购买地点:{place},购买时间:{time},购车购买价:{price},油耗:{youhao},目前行驶:{kilometer},其它:{other}\n")  # 爬取想要的数据存放在文件中
        # print(other)

def main():   # 定义函数 并调用函数

    url = "https://k.autohome.com.cn/146/"
    # 1.提取页面源代码
    html = get_page_source(url)
    # 2.解析页面源代码,提取数据
    parse_page_source(html)

if __name__ == '__main__':  # 调用函数 => 主函数(main)
    main()


运行结果:

在这里插入图片描述

基于Python requests 和 BeautifulSoup 开发爬虫 爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值