自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

blues_C的博客

探索软件测试的深度与广度。

  • 博客(232)
  • 收藏
  • 关注

原创 LLM+RAG:AI生成测试用例智能体平台「详细介绍」

AI生成测试用例智能体平台是一款基于人工智能技术的测试用例自动生成工具,利用RAG(检索增强生成)技术,能够结合项目相关知识文档和历史用例,智能生成高质量的测试用例。本平台适用于测试团队快速创建测试用例,提高测试效率和质量。

2025-04-02 09:30:00 1542 5

原创 Pytest-Bdd-Playwright 系列教程(1):从零开始教你写自动化测试框架「喂饭教程」

最近收到一些小伙伴在后台的留言,能不能提供相应的自动化测试项目的源码参考下,那么今天就来开始新的一期喂饭教程专栏,教大家如何完整的搭建一个完善的自动化测试框架;我们将逐步讲解从项目结构设计到测试执行的整个过程,帮助大家深入理解自动化测试框架的各个组成部分及其工作原理。本文教程内容如下:理解BDD在自动化测试中的应用;掌握设计模式;学会使用Pytest和Playwright进行Web自动化测试;了解如何组织和管理自动化测试项目;掌握测试报告生成和日志管理技巧。

2024-10-24 10:18:06 3642

原创 学习方法[1]:如何摆脱无知?(致尚未放弃学习的人)

首先,认识到无知是学习的前提。人类天生具有“为什么”的好奇心,这是驱使我们不断探索和学习的内在动力。但是光有好奇心并不足以解决我们面临的复杂问题。面对未知,我们需要不断提问、寻找答案,并将学习变成一个持续的过程。

2024-08-10 15:26:40 2058 12

原创 Python + Playwright(0):从零开始学 Playwright

Playwright 是一个强大的自动化库,由微软开发,主要用于web端UI自动化测试,支持 Python、Java、JavaScript、C# 等多种编程语言;Playwright 仅用一个API即可自动执行Chromium、Firefox、WebKit等主流浏览器自动化操作,不仅支持无头模式和有头模式,还提供了代码录制功能,极大地提高了脚本编写效率,并且支持移动端自动化测试。

2024-06-23 16:27:15 8016

原创 二、【环境搭建篇】:Django 和 Vue3 开发环境准备

欢迎来到《Django + Vue3 测试平台》开发实战专栏!现在,是时候撸起袖子,为我们的项目准备好开发环境了。环境搭建就像是建造房屋前的地基工作,虽然看起来枯燥,但却是后续一切顺利进行的关键。

2025-05-20 09:14:32 358

原创 Python + Playwright:如何在 Kubernetes 集群中执行测试?

在实际的测试执行过程中,我们常常面临环境不一致、依赖管理复杂、难以扩展以及与持续集成/持续部署 (CI/CD) 流水线集成不便等问题。为了解决这些问题,我们可以将 Playwright 测试与容器化技术 Docker 以及容器编排平台 Kubernetes (K8s) 相结合,打造一个高效且可靠的方案。

2025-05-19 12:00:07 340

原创 DeepEval 评估框架(三):检测 LLM 幻觉问题「实战教程」

LLM在回答问题时可能会产生"幻觉",即生成与事实不符的内容。这种现象会严重影响模型的可靠性和实际应用价值。本文将重点讲解如何使用 DeepEval 框架检测和评估 LLM 的幻觉问题。

2025-05-19 09:16:34 349

原创 DeepEval 评估框架(二):评估 LLM 摘要质量「实战教程」

在LLM应用场景中,文本摘要是一个非常重要的任务。如何确保模型生成的摘要既准确又完整?继上一篇介绍答案相关性评估后,本文将详细介绍如何使用 DeepEval 框架评估 LLM 的摘要能力。我们将通过实例演示如何设置评估问题、运行测试,并解读测试结果。

2025-05-19 08:00:00 841

原创 DeepEval 评估框架(一):快速搭建 & 测试 LLM 答案相关性「实战教程」

DeepEval 作为一个强大的 LLM 评估框架,提供了简单易用的接口和丰富的评估指标,能够帮助测试人员快速构建和运行评估测试。

2025-05-16 17:48:30 204

原创 AI测试入门:RAG、Agent、Chatbot 类AI应用的评估体系&测试方法详解

本文探讨了AI测试与传统软件测试的区别,并详细介绍了RAG、Agent和Chatbot三类AI应用的核心测试理念和评估指标。通过系统化的测试方法,可以有效评估和提升AI应用的质量与可靠性。

2025-05-16 14:57:41 380

原创 一、【专栏启动】开篇:为什么是 Django + Vue3?测试平台的技术选型与架构蓝图

从零开始构建一个功能完善、技术主流的测试平台,帮助团队提升测试效率、保障产品质量并加速交付周期。

2025-05-15 16:21:30 988 4

原创 BrowserTools MCP:让AI帮你调试浏览器「喂饭教程」

BrowserTools MCP 是一款由AgentDesk团队开发的工具,通过AI技术提升浏览器调试和自动化操作的效率。它通过将AI代码编辑器与浏览器深度集成,提供控制台日志、网络请求、DOM结构、页面截图等数据的采集与分析,并支持自动化操作、智能诊断和优化建议。

2025-05-12 13:11:26 375

原创 Skyvern:用 AI+视觉驱动浏览器自动化

Skyvern 是一个开源的自动化平台,结合了大型语言模型(LLM)和计算机视觉(CV)技术,能够像人类一样理解和操作网页。它支持自动化表单填写、按钮点击、复杂页面结构识别、动态内容处理以及多步工作流的执行。

2025-05-10 15:39:46 745

原创 Midscene.js Chrome 插件实战:基于 AI 驱动 WEB UI 自动化测试「喂饭教程」

Midscene.js 是一款开源的AI驱动UI自动化工具,支持自然语言交互、数据提取、断言验证等多种功能。自然语言交互。本文将以 Midscene.js Chrome 插件为例,带你从零上手,体验如何用最简单的方式实现高效、智能的UI自动化测试。

2025-05-09 11:48:55 768

原创 Magnitude:基于AI的Web自动化测试框架

Magnitude,作为一款开源、AI原生的Web自动化测试框架,它通过视觉AI和自然语言驱动的测试用例,极大地提升了测试的智能化和易用性。

2025-05-08 09:17:31 736

原创 Nanobrowser: AI+浏览器自动化 Chrome 扩展的使用「详细教程」

传统的Web自动化工具(如Selenium、Puppeteer等)虽然强大,但往往需要编写大量脚本,门槛较高。而Nanobrowser的出现,为AI Web自动化带来了全新的交互体验——只需一句自然语言指令,即可驱动多智能体协作完成复杂网页任务。本文将深入介绍Nanobrowser的功能、安装配置及实战案例,帮助你快速上手并高效利用这一开源AI Web自动化利器。

2025-05-06 10:48:18 826

原创 Python + Playwright :测试失败的排查与调试技巧

UI 自动化测试的本质是用代码模拟用户操作,验证产品功能的正确性。但是,测试脚本在运行过程中经常会遇到各种失败和异常。如何高效排查和调试这些失败,是每一位自动化测试工程师的必备技能。本文将结合实际项目经验,给搭建讲解下自动化测试中常见的失败类型、排查思路、调试技巧、工具辅助、最佳实践等,帮助你快速定位问题、提升测试脚本的稳定性和可维护性。

2025-05-06 09:00:00 447

原创 Python + Playwright:如何在Docker 容器运行测试?

在自动化测试领域,Playwright结合Docker容器化部署,可以极大提升测试环境的可移植性和一致性。本文将手把手教你如何在 Docker 容器中,利用 Python+Playwright,结合 browserless远程浏览器服务,运行自动化测试用例。

2025-04-26 15:47:04 537 1

原创 基于 Playwright MCP 的 AI 自动化测试实战「喂饭教程」

传统的自动化测试,高度依赖开发者手动编写和维护脚本,不仅耗时巨大,且脚本脆弱性高,一旦页面结构或元素发生细微变化便可能失效。随着 MCP(Model Context Protocol)协议的出现,大语言模型(LLM)与自动化工具的协同得以实现。现在,我们能够通过自然语言向工具下达指令,让其自动完成复杂的浏览器操作。

2025-04-24 11:06:55 672

原创 【我的创作纪念日】代码与测试的碰撞:一个测试博主的成长印记

时间总是在敲击键盘和执行脚本间悄然流逝。又到了我在 CSDN 的创作纪念日,回望这段充满挑战与收获的旅程,心中百感交集。作为一名深耕软件测试领域的博主,我想和大家分享我的故事。

2025-04-24 09:09:20 662

原创 FastMCP:从零开始开发你的第一个MCP「喂饭教程」

FastMCP 的主要优势在于其简单性和 Python 风格的接口。我们可以专注于构建有用的工具和数据接口,而无需关心底层的 MCP 协议细节和服务器管理。这使其成为快速构建 LLM 增强应用的理想选择。

2025-04-23 11:55:01 742

原创 Python + Playwright:多环境与多账号管理项目实战「完整代码」

在自动化测试的过程中,我们通常需要在不同环境(开发、测试、预发布、生产)中执行测试。每个环境可能有不同的URL、API端点和配置参数。手动修改这些参数不仅耗时且容易出错,而使用环境变量能够有效解决这一问题。

2025-04-21 12:42:56 477

原创 Python+Playwright:在HTML测试报告中显示元数据「详细介绍」

方案一:使用pytest-html插件,动态收集信息、自定义HTML报告样式运行测试,并生成报告。方案二:自定义HTML报告模板,实现报告生成器,集成到测试框架运行测试。

2025-04-18 09:10:10 678

原创 Python + Playwright:如何提高自动化测试数据的可维护性?

测试数据的可维护性是衡量自动化测试项目健康度的重要指标。通过将数据外部化、利用生成器、参数化、fixture、API、抽象层和配置管理等手段,我们可以构建出更加健壮、灵活且易于维护的自动化测试解决方案。选择合适的策略组合,并根据项目的具体需求进行调整,将大大提升自动化测试的效率和价值。

2025-04-16 14:07:16 417

原创 Python + Playwright:使用正则表达式增强自动化测试

在自动化测试过程中,动态加载的内容、不断变化的 UI 元素、以及需要精确验证的文本信息,都对我们的测试脚本提出了更高的要求。面对某些棘手的定位和验证场景时,传统的静态定位策略(如 ID、CSS 或 XPath)有时会显得力不从心。这时,正则表达式就能派上用场了。它并非银弹,但作为一种强大的文本模式匹配工具,当它与 Playwright 巧妙结合时,能够极大地增强我们自动化测试的灵活性、健壮性和覆盖范围。我发现熟练运用正则表达式,是提升测试效率和脚本稳定性的关键技能之一。

2025-04-16 09:15:00 488

原创 Python + Playwright:编写自动化测试的避坑策略

对于刚接触 Playwright 或自动化测试不久的新手而言,很容易因为一些常见的误区或不良实践,导致测试脚本脆弱、难以维护、执行效率低下,频繁出现不稳定的测试;今天,我将给大家梳理下,在使用 Python 结合 Playwright 进行自动化测试时,有哪些最常见的一些“坑点”。我们将深入分析这些坑点的成因,并结合 Playwright 的设计理念和最佳实践,提供切实可行的“避坑策略”。

2025-04-15 15:00:00 985

原创 Python + Playwright:让测试更快速执行的几种优化策略

随着项目迭代,自动化测试套件的规模和复杂性会持续提升。测试执行时间越来越长了。最初几分钟就能完成的测试,变成需要几十分钟甚至几小时才能跑完。这种效率的下降,直接拖慢整个 CI/CD 流程,使得团队无法快速获得质量反馈,严重制约了自动化测试应有的价值。所以,本专栏的核心目标,不仅仅是介绍一些零散的优化技巧,更重要的是呈现一套体系化的优化思维框架,并辅以具体、实用的操作指导。

2025-04-15 10:30:00 540

原创 Python + Playwright:建立有效测试套件的策略详解

今天,我想和大家深入探讨下:如何利用 Python 和 Playwright ,构建和维护一套真正有效的自动化测试套件;随着迭代速度不断加快,一套混乱、臃肿、难以维护的测试套件不仅不能保障质量,反而会成为团队的沉重负担。因此,制定清晰、可持续的测试套件策略至关重要;本文将结合我多年的实践经验,特别是针对测试套件维护中遇到的一些问题,分享一些有效的策略,希望能给大家带来启发。

2025-04-15 09:00:00 250

原创 Python + Playwright:规避常见的UI自动化测试反模式

作为在测试自动化领域摸爬滚打多年的测试工程师,我见过太多的项目最终陷入了维护的泥潭。很多时候,问题并非出在工具本身,而是源于一些悄然滋生、看似无害却后患无穷的“反模式”。这些反模式会侵蚀测试代码的健壮性、可读性和可扩展性,最终拖慢整个开发流程。今天,我们将深入探讨 UI 测试自动化中最常见的四大反模式,并结合 Python 和 Playwright 的具体实践,展示如何识别它们、理解其危害,并最终通过重构走向更清晰、更高效、更健壮的测试之路。整体式页面对象带有逻辑的页面对象基于 UI 的测试设置。

2025-04-14 16:24:56 884

原创 Python + Playwright:测试的对象池模式使用详解

对象池模式是一种创建型设计模式,它维护一组已初始化的对象实例,当需要使用对象时,客户端可以从池中获取对象,使用完毕后将对象返回给池而不是销毁它。对象的创建成本高昂(如浏览器实例)需要频繁创建和销毁对象对象数量有限,可以被重用对象初始化时间长但使用时间短在 Playwright 自动化测试中,浏览器、上下文(context)和页面(page)对象都是资源密集型的,非常适合应用对象池模式进行管理。对象池模式为 Python+Playwright 测试提供了显著的性能和资源优化。

2025-04-14 11:59:41 381

原创 打造AI智能测试平台(思路篇):智能化生成需求、建模、用例与报告

本项目是一个基于 Streamlit 构建的交互式 Web 应用,利用大语言模型 (LLM) 和检索增强生成 (RAG) 技术,辅助完成各种软件测试任务。用户可以输入需求描述,选择性地通过知识库和历史数据增强上下文,从而生成需求规格说明书测试用例测试建模文档、和测试报告。

2025-04-08 11:44:11 1311 3

原创 Pytest:Marker(标记)详解

今天,我想和大家深入探讨 pytest 中一个重要且强大的特性——Marker(标记);对于初学者来说,Marker 可能只是一个简单的标签;但对于经验丰富的工程师而言,Marker 是组织、筛选、控制和扩展测试用例集的瑞士军刀;它能显著提升大型项目中测试套件的管理效率和执行灵活性。

2025-03-31 17:23:00 572

原创 LangManus:开源的 AI 自动化框架

LangManus 是一个开源的 AI 自动化框架,基于分层多智能体系统设计,目的在于将LLM与各类(如:代码执行、网络搜索、浏览器自动化和文件处理等)工具相结合,以完成复杂任务。LangManus 支持多种LLM,包括开源模型和闭源模型的 API 接口。它可以根据任务的复杂度自动选择合适的模型,并通过提示词管理工具将用户输入和其他外部数据转化为适合语言模型的提示词,从而实现多样化的任务执行。

2025-03-28 09:23:10 524

原创 如何在 Cursor 中集成使用 MCP工具?

前往 Cursor 官网,选择适合的操作系统版本(支持 Windows、Mac 和 Linux)进行下载。

2025-03-22 16:47:18 2398

原创 什么是模型上下文协议 (MCP)?与 API 相比,它如何简化 AI 集成?

模型上下文协议 (MCP) 是一种标准化协议,可将 AI 代理连接到各种外部工具和数据源。可以将其想象为 USB-C 端口 - 但适用于 AI 应用程序。模型上下文协议 (MCP)是一种将 AI 代理连接到各种外部工具和数据源的标准化协议正如 USB-C 简化了您将不同设备连接到计算机的方式一样,MCP 简化了 AI 模型与您的数据、工具和服务交互的方式。MCP: AI代理与外部数据/工具动态交互的统一接口API:传统方法,需要个性化集成和更多人工监督MCP 提供了一种统一标准化。

2025-03-21 11:18:48 723

原创 Pydoll:告别WebDriver!Python异步Web自动化测试工具

在Web自动化测试领域,Selenium凭借其强大的功能和广泛的浏览器支持,长期占据着主导地位。然而,Selenium的繁琐配置、WebDriver版本兼容性问题,以及其同步阻塞的特性(在执行操作时会暂停程序执行,直到操作完成),也让不少测试人员使用时头疼不已。今天,我们要介绍一款颠覆性的Python库 Pydoll,它彻底摆脱了WebDriver的束缚,以异步方式提供高效、稳定、自然的Web自动化体验。Pydoll的出现,为Python Web自动化测试带来了全新的选择。

2025-03-18 16:06:32 1292

原创 Manus平替:多智能协作框架OWL的安装及使用「喂饭教程」

OWL 是一个多智能体协作框架,是在 CAMEL-AI 框架上构建的,目的在于使用 AI 智能体协作解决现实任务的方式。通过利用动态智能体交互,OWL 实现了跨多领域的高效、稳健的任务自动化。

2025-03-11 11:25:37 696

原创 OpenManus:开源版Manus的快速安装及使用「喂饭教程」

OpenManus是由 MetaGPT 社区成员开发的Manus开源版本。与 Manus 相比,OpenManus 的主要优势在于其本地化部署能力,用户可以在个人电脑上运行 AI 代理,并观察其执行任务的过程。

2025-03-08 22:45:54 9681 2

原创 Deepseek+OpenAI API:打造你的第一个智能聊天机器人「喂饭教程」

本文将摒弃复杂的理论,专注于实践操作。我将一步步地指导你,从环境搭建到代码编写,最终构建一个功能完善的智能聊天机器人。通过实际操作,你将更快地掌握Deepseek和OpenAI的API使用方法,并对智能对话系统的底层原理有更深刻的理解。

2025-03-06 16:36:06 690

原创 【AI测试必知】Agentic AI、AI Agent 和 Agent 的区别

Agentic AIAI Agent和Agent这三个术语,尽管它们看起来相似,但实际上代表了不同的技术层次和应用场景。本文将从基础概念出发,深入探讨这三者的区别,并分析它们在现实中的应用。

2025-03-06 11:24:30 538

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除