UVA12186--树型DP

题意:

给出一颗树,最高的节点是0,要求让每个人签字的话必须他的所有的下一层儿子的数目的至少T%的人签字,问要使得0签字,至少要多少人签字呢?

思路:

对于每个人,用dp[i]表示i这个节点至少需要多少人的签字,然后用dfs从根进行搜索,更新的时候是在回溯的时候进行从叶节点一层一层往上进行更新,可以算出每个节点至少需要多少人签字,然后取他的下一层的dp[j]的前几个;

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<cmath>
#include<queue>
#define INF 1e6
using namespace std;
const int maxn = 1e5+3;

int n,T;
vector<int> g[maxn];
int ch[maxn];
int dp(int u)
{
    if(g[u].size() == 0) return 1;
    priority_queue<int,vector<int>,greater<int> > que;
    for(int i = 0; i < g[u].size(); ++i)
    {
        int to = g[u][i];
        que.push(dp(to));
    }
    int sum = 0;
    //printf("%d ",ch[u]);
    for(int i = 0; i < ch[u]; ++i)
    {
        sum+=que.top();
        que.pop();
    }
    return sum;
}
int main()
{
    //freopen("in","r",stdin);
    while(~scanf("%d%d",&n,&T))
    {
        if(n == 0&&T ==0) break;
        int fa;
        for(int i = 1; i <= n; ++i)
        {
            scanf("%d",&fa);
            g[fa].push_back(i);
        }
        for(int i = 0; i <= n; ++i)//if(T == 100) ch[i] = g[i].size();
            ch[i] = (int)(ceil(1.0*g[i].size()*T/100));
        cout<<dp(0);
        printf("\n");
        for(int i = 0; i <= n; ++i) g[i].clear();
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值