题意:
给出一颗树,最高的节点是0,要求让每个人签字的话必须他的所有的下一层儿子的数目的至少T%的人签字,问要使得0签字,至少要多少人签字呢?
思路:
对于每个人,用dp[i]表示i这个节点至少需要多少人的签字,然后用dfs从根进行搜索,更新的时候是在回溯的时候进行从叶节点一层一层往上进行更新,可以算出每个节点至少需要多少人签字,然后取他的下一层的dp[j]的前几个;
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<cmath>
#include<queue>
#define INF 1e6
using namespace std;
const int maxn = 1e5+3;
int n,T;
vector<int> g[maxn];
int ch[maxn];
int dp(int u)
{
if(g[u].size() == 0) return 1;
priority_queue<int,vector<int>,greater<int> > que;
for(int i = 0; i < g[u].size(); ++i)
{
int to = g[u][i];
que.push(dp(to));
}
int sum = 0;
//printf("%d ",ch[u]);
for(int i = 0; i < ch[u]; ++i)
{
sum+=que.top();
que.pop();
}
return sum;
}
int main()
{
//freopen("in","r",stdin);
while(~scanf("%d%d",&n,&T))
{
if(n == 0&&T ==0) break;
int fa;
for(int i = 1; i <= n; ++i)
{
scanf("%d",&fa);
g[fa].push_back(i);
}
for(int i = 0; i <= n; ++i)//if(T == 100) ch[i] = g[i].size();
ch[i] = (int)(ceil(1.0*g[i].size()*T/100));
cout<<dp(0);
printf("\n");
for(int i = 0; i <= n; ++i) g[i].clear();
}
}