我发现,最近大家都挺难的!

生活苦不苦,只有自己知道。外面难不难,身边遭遇知道。

看朋友圈,大家都过得很好,到处旅游到处拍照。

再看自己,工作不如意,外面环境差,消费还降级。

这段时间,和亲戚朋友聊了聊。原来,现实和自己想象中的都不太一样。

好像大家过得都不怎么好。

1.小L:股东说公司撑不到年底了

小L的公司是一家房地产咨询公司,主要业务是接一些地产公司的项目招投标和资质服务。

他说在2020年以前,他们公司的业务发展得都挺顺利的,他们老板也比较阔气,对员工也挺好,所以那几年,他们都活得挺滋润。

但是最近几年,房地产整个行业都不行了,他们这种附属业务的公司,自然也是走下坡路的。

他说他们现在是一年比一年差。

公司员工从最初的40多人,到现在的不到10个人。

公司办公地址也从最开始在市中心南京路,搬到了现在的外环外。

一切都是为了降本增效,一切都是为了能够活下去。

他们老板现在已经移民到国外了,老板的钱赚够了,所以现在他们公司能不能好,他们老板其实是无所谓了。

上个月他们的股东对公司的资产进行了评估,得出的结论是大概率撑不到年底了。

如果真如股东所言,到时候何去何从,小L心里现在完全没底。

2.小Z:被裁半年了,但是我没什么压力

小Z的公司是腾讯的服务商,也就是业内所说的ISV,他们公司主要就是接一些项目的开发和运维,依托于腾讯的体系,之前一直发展得挺好的。

他的岗位是项目经理,最高峰的时候,同时负责6个项目,下班和周末都是各种会议。

今年年后,大概2月份左右开始,他们公司开始裁员了,很不幸,他也在名单里。

他说大环境不好,腾讯内部也在调整,对于他们这种ISV就是更加的断舍离。

再加上,他们的主要业务都是ToB的,这几年还有哪家公司有钱去做项目呢。

所以,目前这样的结果,也是情理之中的事情。

但是小Z的心态很好,他说刚好给自己放个假,好好陪陪孩子和家人。

前面几年天天忙,很少有时间照顾到家里,趁着这个机会,好好的调整调整。

看他的朋友圈,最近半年,不是四川就是西藏,各种自驾游。

新的生活开启,好好享受当下。

3.大Z:前段时间公司调整,差一点被裁

大Z的公司是一家跨国公司,他所在的部门是市场部,他的职位是市场总监,而且是年薪百万的那种。

在外人眼中,他们就是那种精英中的精英。

但是,风波还是来临了。

最近,他们公司从国外总部空降了一批高管。你可以想象,空降了一批,那自然也就要走一批。

他们公司的销售部门,销售总监被裁,然后下面的人也是大换血。

所以前段时间,他们公司是人心惶惶,搞得他自己也十分的焦虑。

其实,他说,虽然他还没想好退路,但是他也做好了最坏的打算了。

好在最终的结果是,他留下来了,有惊无险。

4.小S:公司战略一直调整,组织架构也跟着变

小S的公司是一家新能源汽车公司,属于腰部的那种。

但是现在的市场环境,连头部都不稳定,更别说腰部了。

他们公司最近几年发布了几款产品,但是都属于那种不温不火的状态。

但是汽车可不像我们做其他产品,这背后的投入是巨大的,销量一旦没有达到预期,之前投的钱基本就是打水漂了。

现在各家都很卷,他们目前也是活得挺艰难的。

去年他们公司就有过一次战略调整,听说今年又在调整。

之前沸沸扬扬的要“all-in AI”,现在也是不了了之。

他说虽然目前公司还没有“广进计划”,但是按照这样的节奏下去,应该也不远了。

5.大L:合同到期了,公司不续,降薪7K入职新公司

大L的公司也是一家新能源公司,但是比较不幸的是,他们公司是尾部。

就像上面说的那样,头部都不好混,别说尾部了。

他们公司今年也是开源节流,要活下去呀。

只不过很不幸,他被优化了。

他是3年前入职的,今年合同刚好到期,公司也就没有再续签了。

赔偿是有点,但是在目前的环境下,有份工作还是要安心很多的。

他也是找了好久,目前也入职了新公司,只不过薪资和之前相比,少了7K。

他说,能找到就不错了,先干着吧。

通过上面的这些故事,我们不难发现,现在确实很难。

当然,这可能是我的“幸存者偏差”,真实的环境可能不是这样的。

毕竟,还有那么多人,在默默的努力着。

--- end ---

内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究与工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无人机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷与可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合人群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研人员及研究生;熟悉Matlab/Simulink或Python的开发人员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析与优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF与新方法在不同几何参数下的误差表现,强化理论与实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路与技术实现路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值