动态规划02:1186. Maximum Subarray Sum with One Deletion 删除一次得到子数组最大和

该问题是一个动态规划问题,基于53.MaximumSubarray,允许在数组中删除一个元素以找到最大和的子数组。最大子数组和可以通过维护以每个元素结束的最大子数组和以及以每个元素开始的最大子数组和来求解。在遍历数组时,更新这两个值,并在删除一个元素时,比较保留当前元素和删除当前元素后的最大和,选择较大者作为新的最大和。
摘要由CSDN通过智能技术生成

动态规划02:动态规划

1186. Maximum Subarray Sum with One Deletion 删除一次得到子数组最大和

给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。
注意,删除一个元素后,子数组 不能为空。
提示:

  • 1 <= nums.length <= 10^5
  • –10^4 <= nums[i] <= 10^4

示例1:

输入:arr = [1,-2,0,3]
输出:4
解释:我们可以选出 [1, -2, 0, 3],然后删掉 -2,这样得到 [1, 0, 3],和最大。

示例2:

输入:arr = [1,-2,-2,3]
输出:3
解释:我们直接选出 [3],这就是最大和。

示例3:

输入:arr = [-1,-1,-1,-1]
输出:-1
解释:最后得到的子数组不能为空,所以我们不能选择 [-1] 并从中删去 -1 来得到 0。
我们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。

本题为 53. Maximum Subarray 最大子数组 的拓展,在最大子数组的基础上,可以选择删除一个最小数或不删除,当然只有当这个数为负数时,才会让和更大。所以这道题可以在最大子数组的问题的基础上,再计算删除一个数后的最大子数组和。假设在最大子数组上得到一个子数组下标:[a,b] (当然a <= b),当删除下标 i 时,则子数组变为:[a, i - 1) 和 (i + 1, b],则arr[i - 1]和arr[i + 1]这两个数一定在子数组中,其中[a, i - 1)的最大子数组和即为:dp[i - 1],也就是以arr[i -1]结尾的最大子数组和,而 (i + 1, b]区间表示以arr[i + 1]开头的最大子数组,其含义与dp[i]刚好相反。分析到这,dp[i]可以根据Kadane’s Algorithm得到, (i + 1, b]区间以arr[i + 1]开头的最大子数组也可同理得到。若用maxEndHere[i]表示在[0, i]范围内以arr[i]结尾的最大子数组之和,用maxStratHere[i]表示在[i, n - 1]范围以内以arr[i]为开始的最大子数组之和,那么移除arr[i]后的最大子数组之和就是:maxEndHere[i - 1] + maxStrartHere[i + 1]了,代码如下:

public int maximumSum(int[] arr) {
        int max = arr[0];
        // 表示在[i, n - 1]范围以内以arr[i]为开始的最大子数组之和
        int[] sumStartHere = new int[arr.length];
        // 表示在[0, i]范围内以sums[i]结尾的最大子数组之和
        int[] sumEndHere = new int[arr.length];
        // 到i节点的最大子数组和,初始值为arr[0]
        sumEndHere[0] = arr[0];
        // 1)不删除元素时,记录到arr[i]的最大子数组和的最大值:max        
        for (int i = 1; i < arr.length; i++) {
            sumEndHere[i] = Math.max(sumEndHere[i - 1] + arr[i], arr[i]);
            max = Math.max(max, sumEndHere[i]);
        }
        // 与Kadane's Algorithm相反,计算[i, n - 1]范围以内以arr[i]为开始的最大子数组之和
        sumStartHere[arr.length - 1] = arr[arr.length - 1];
        for (int i = arr.length - 2; i >= 0; i--) {
            sumStartHere[i] = Math.max(arr[i], sumStartHere[i + 1] + arr[i]);
        }
        // 2)当去掉的那个数下标为i,则比较:max 与 sumStartHere[i + 1] + sumEndHere[i - 1] 的大小
        for (int i = 1; i < arr.length - 1; i++) {
            max = Math.max(max, sumStartHere[i + 1] + sumEndHere[i - 1]);
        }
        return max;
    }

附: 53. Maximum Subarray 最大子数组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值