动态规划02:动态规划
1186. Maximum Subarray Sum with One Deletion 删除一次得到子数组最大和
给你一个整数数组,返回它的某个 非空 子数组(连续元素)在执行一次可选的删除操作后,所能得到的最大元素总和。换句话说,你可以从原数组中选出一个子数组,并可以决定要不要从中删除一个元素(只能删一次哦),(删除后)子数组中至少应当有一个元素,然后该子数组(剩下)的元素总和是所有子数组之中最大的。
注意,删除一个元素后,子数组 不能为空。
提示:
- 1 <= nums.length <= 10^5
- –10^4 <= nums[i] <= 10^4
示例1:
输入:arr = [1,-2,0,3]
输出:4
解释:我们可以选出 [1, -2, 0, 3],然后删掉 -2,这样得到 [1, 0, 3],和最大。
示例2:
输入:arr = [1,-2,-2,3]
输出:3
解释:我们直接选出 [3],这就是最大和。
示例3:
输入:arr = [-1,-1,-1,-1]
输出:-1
解释:最后得到的子数组不能为空,所以我们不能选择 [-1] 并从中删去 -1 来得到 0。
我们应该直接选择 [-1],或者选择 [-1, -1] 再从中删去一个 -1。
本题为 53. Maximum Subarray 最大子数组 的拓展,在最大子数组的基础上,可以选择删除一个最小数或不删除,当然只有当这个数为负数时,才会让和更大。所以这道题可以在最大子数组的问题的基础上,再计算删除一个数后的最大子数组和。假设在最大子数组上得到一个子数组下标:[a,b] (当然a <= b),当删除下标 i 时,则子数组变为:[a, i - 1) 和 (i + 1, b],则arr[i - 1]和arr[i + 1]这两个数一定在子数组中,其中[a, i - 1)的最大子数组和即为:dp[i - 1],也就是以arr[i -1]结尾的最大子数组和,而 (i + 1, b]区间表示以arr[i + 1]开头的最大子数组,其含义与dp[i]刚好相反。分析到这,dp[i]可以根据Kadane’s Algorithm得到, (i + 1, b]区间以arr[i + 1]开头的最大子数组也可同理得到。若用maxEndHere[i]表示在[0, i]范围内以arr[i]结尾的最大子数组之和,用maxStratHere[i]表示在[i, n - 1]范围以内以arr[i]为开始的最大子数组之和,那么移除arr[i]后的最大子数组之和就是:maxEndHere[i - 1] + maxStrartHere[i + 1]了,代码如下:
public int maximumSum(int[] arr) {
int max = arr[0];
// 表示在[i, n - 1]范围以内以arr[i]为开始的最大子数组之和
int[] sumStartHere = new int[arr.length];
// 表示在[0, i]范围内以sums[i]结尾的最大子数组之和
int[] sumEndHere = new int[arr.length];
// 到i节点的最大子数组和,初始值为arr[0]
sumEndHere[0] = arr[0];
// 1)不删除元素时,记录到arr[i]的最大子数组和的最大值:max
for (int i = 1; i < arr.length; i++) {
sumEndHere[i] = Math.max(sumEndHere[i - 1] + arr[i], arr[i]);
max = Math.max(max, sumEndHere[i]);
}
// 与Kadane's Algorithm相反,计算[i, n - 1]范围以内以arr[i]为开始的最大子数组之和
sumStartHere[arr.length - 1] = arr[arr.length - 1];
for (int i = arr.length - 2; i >= 0; i--) {
sumStartHere[i] = Math.max(arr[i], sumStartHere[i + 1] + arr[i]);
}
// 2)当去掉的那个数下标为i,则比较:max 与 sumStartHere[i + 1] + sumEndHere[i - 1] 的大小
for (int i = 1; i < arr.length - 1; i++) {
max = Math.max(max, sumStartHere[i + 1] + sumEndHere[i - 1]);
}
return max;
}