- 博客(46)
- 收藏
- 关注
原创 curl: (77) error setting certificate verify locations
当使用curl命令时出现"(77) error setting certificate verify locations"报错,通常是由于Anaconda自带的curl使用了不完整的CA证书路径。
2025-10-22 17:01:43
408
原创 UV工具安装配置使用教程
Astral公司推出的uv是一款集成化Python工具,旨在替代pip、virtualenv等传统工具链,统一管理环境、依赖和运行隔离。
2025-10-22 16:28:34
1083
原创 ModuleNotFoundError: No module named ‘pyairports‘
本文记录了在UV环境中部署Qwen2.5-7B大模型时遇到的"ModuleNotFoundError: No module named 'pyairports'"错误及解决方案。
2025-10-16 06:00:00
1843
1
原创 【深度解析】三大Transformer架构:Encoder-only、Decoder-only与Encoder-Decoder
NLP三大模型架构解析:Transformer衍生出的Encoder-only、Decoder-only和Encoder-Decoder三大主流架构各具特色。
2025-10-01 06:00:00
843
原创 大语言模型“记忆功能”探讨
大模型通过上下文窗口实现短期记忆功能,其工作原理基于自回归生成和注意力机制。然而,这种记忆具有严重局限性:容量限制导致信息丢失、注意力偏向开头和结尾内容、不同会话间完全隔离。
2025-10-01 06:00:00
470
原创 Function Call 原理详解
FunctionCalling是大语言模型(如GPT-3.5、GPT-4)的重要特性,允许模型智能调用外部工具或API,扩展其能力以完成实时数据获取、计算、数据库交互等任务。
2025-09-30 14:48:26
912
原创 大模型分词器原理详解
大模型分词器是LLM的核心组件,负责将文本转换为模型可处理的数字Token。它通过子词分割算法(BPE、WordPiece、Unigram等)解决词汇无限性和未登录词问题,在字符与单词间取得平衡。
2025-09-30 14:33:10
902
原创 BGE-m3 和 BCE-Embedding 模型对比分析
BGE-m3和BCE-Embedding各有优势,BGE-m3在多语言支持(100+语言)、长文本处理(8192tokens窗口)和高密度检索(跨语言检索提升15%)方面表现突出;BCE-Embedding则在垂直领域优化、轻量化部署(110M参数,推理速度提升40%)和中文语义理解(成语/古汉语准确率更高)更具优势。
2025-09-12 14:47:45
190
原创 温度预测算法评价指标详解:从理论到实践的全面指南
本文系统介绍了7种温度预测模型的核心评价指标及其应用。主要包括MSE、RMSE、MAE、R²、MAPE、MedianAE和MaxError,从理论定义、数学公式到实际案例和Python实现进行了详细说明。
2025-09-12 14:12:54
954
原创 解决 Ubuntu 环境下 ffmpeg 安装依赖问题(FileNotFoundError: ffprobe 错误处理)
本文介绍了解决pydub音频处理时出现"FileNotFoundError:ffprobe"错误的多种解决方法。
2025-08-25 16:16:32
623
原创 《GPT-OSS 模型全解析:OpenAI 回归开源的 Mixture-of-Experts 之路》
OpenAI推出开源大模型GPT-OSS系列,包含120B和20B两个版本,采用Apache2.0协议。模型采用MoE架构和MXFP4量化技术,支持131K长上下文和高效推理。部署方式涵盖vLLM、Transformers等多种方案,提供兼容OpenAI的API接口。该系列在MMLU等测试中表现优异,为开发者提供强大的开源AI工具。
2025-08-20 14:45:02
1195
原创 检索系统评测指标详解:从理论到实践
本文系统介绍了信息检索系统中的关键评测指标。基础指标包括Recall@K(召回率)、Precision@K(精确率)、MRR(平均倒数排名)和NDCG@K(归一化折扣累积收益),分别衡量检索的全面性、准确性、速度和排序质量。高级指标涵盖DiversityScore(多样性分数)和CoverageScore(覆盖度分数),用于评估结果的丰富性和去重效果。
2025-08-07 06:00:00
1282
原创 RAG中的三大召回方式详解
本文介绍了三种RAG系统中常用的召回策略:1)BM25稀疏召回,基于词频统计的快速检索方法,适合文档匹配但缺乏语义理解;2)BCE向量召回,通过双塔模型实现语义搜索,效果更好但需要训练数据;3)关键词召回,基于规则匹配的简单方法,适合结构化场景但扩展性差。三种方法各具特点,可根据实际场景需求选择使用,其中BM25适合通用检索,BCE适合语义搜索,关键词召回则适用于规则明确的垂直领域。
2025-08-06 06:00:00
1267
原创 深入剖析 RAG 检索系统中的召回方式:BM25、向量召回、混合策略全解析
RAG(检索增强生成)系统通过结合信息检索与文本生成技术提升大模型回答的准确性。其中,召回作为第一步,直接影响系统性能。本文系统介绍了三种核心召回方式:基于关键词匹配的BM25稀疏召回、利用语义向量的BCE稠密召回,以及融合两者的混合召回。
2025-08-05 14:04:02
2252
原创 【RAG 检索排序详解】RRF vs Reranker:原理、区别与实战应用
RRF(Reciprocal Rank Fusion) 和 Reranker(重排序器)的区别、适用场景及如何结合使用。
2025-08-01 13:47:17
1696
原创 Qwen3 模型本地部署与应用
阿里推出第三代Qwen3大模型系列,包含8个参数规模从0.6B到235B的密集型和MoE模型,支持多模态输入和128K超长上下文。
2025-08-01 09:57:17
1169
原创 Git常用命令赏析
本文提供 Git 版本控制系统的全面使用指南,包含 26 个章节的核心内容: 基础操作、工作流核心、高级功能、性能优化、安全措施、工作流实践、疑难解决等。
2025-07-25 10:05:40
1238
原创 Linux 常用命令大全
本文整理了Linux系统常用命令大全,涵盖系统控制、信息查看、性能监控、文件操作、权限管理、用户配置、磁盘维护、软件安装等核心功能。
2025-07-24 09:51:38
819
原创 「实战指南」使用 Python 调用大模型(LLM)
本文介绍了四种Python调用大语言模型(LLM)API的方式:原生HTTP请求提供最高灵活性;封装式API调用便于维护和模型切换;OpenAI SDK方式稳定性好且功能丰富;传统OpenAI库简洁易用。每种方式各有特点:原生HTTP适合精确控制请求,封装式适合频繁切换模型,SDK适合官方API调用,传统库适合快速开发。开发者应根据项目需求(灵活性、维护性、功能丰富度等)选择合适方式,同时注意API安全和错误处理。
2025-07-22 14:29:46
3010
原创 Attu-Milvus向量数据库可视化工具
本文介绍了Milvus向量数据库的可视化管理工具Attu的两种安装方式:通过Docker容器启动(运行指定命令并设置相关参数)或下载桌面版程序安装。同时说明从Milvus v2.5.0版本开始内置的WebUI工具,可通过浏览器访问9091端口查看数据库详情、管理任务等。Attu作为开源工具,为Milvus提供了便捷的图形化管理界面,支持对集合、索引等核心功能的高效操作。
2025-07-19 15:19:08
1609
原创 基于LLM的问答对数据集构建和相关性评分
本文介绍了一套基于大语言模型(LLM)的电力领域智能问答系统,包含智能问答生成器和相关性评估系统两大核心模块。该系统针对电力行业特点设计,能高效处理变压器、继电保护、电网运行等专业领域知识。问答生成器采用批处理优化和多重验证机制,确保输出质量;相关性评估系统采用0-10分精细评分体系,为检索增强生成(RAG)提供支持。
2025-07-17 16:56:54
997
原创 Termius:介绍+使用教程
Termius是一款支持全平台的SSH终端管理工具,适用于Windows/macOS/Linux/iOS/Android系统。它提供SSH/Mosh/Telnet连接、SFTP文件传输、多主题界面、服务器分组管理等功能,并支持端到端加密的跨设备同步。
2025-07-15 14:20:58
3351
原创 qpdf工具详解
qpdf是一个基于Qt框架的PDF处理工具,支持PDF合并/拆分、加密解密、线性化优化、结构检查和调试等功能。主要使用Qt框架和pdf.js技术实现跨平台PDF处理。支持Linux、macOS和Windows系统安装,提供命令行操作和C++/Python API接口。典型应用场景包括批量PDF处理、权限管理、网页优化和PDF结构分析。
2025-07-14 17:21:07
1444
原创 Git 提交历史查看与日志筛选全攻略
本文介绍了Git日志(gitlog)的实用操作指南,主要内容包括:基础用法展示提交历史、显示补丁(-p)与修改统计(--stat)、多样化输出格式(--pretty)设置、图形化分支(--graph)展示,以及多种过滤方式(时间、作者、关键词、路径等)。
2025-07-14 06:00:00
826
原创 LangChain 框架深入解析
LangChain是一个强大的框架,用于构建基于大型语言模型(LLM)的应用程序。它提供模块化设计、链式调用、上下文记忆等功能,支持与多种数据源和工具的集成。核心组件包括模型封装、提示模板、任务链、智能代理等,适用于智能对话、知识问答、自动化任务等多种场景。LangChain简化了LLM应用的开发流程,提高了开发效率和系统灵活性。
2025-07-13 06:00:00
1949
原创 基于大模型自动化生成问答对数据集
本文介绍了一个面向电力领域的问答数据集生成工具,通过OpenAI API将电力技术文本自动转化为结构化QA对。该工具采用批处理架构,包含文本分块、LLM生成、规则过滤、领域后处理等模块,支持电压等级提取、技术参数标记等电力专属功能。
2025-07-12 06:00:00
964
原创 Docker常用命令大全(二)
Docker容器化技术核心操作指南:本文系统介绍了Docker的26个关键操作指令,涵盖容器全生命周期管理(运行/停止/删除)、镜像操作(构建/推送/备份)、网络与存储配置、日志监控以及Docker Compose编排等。
2025-07-11 06:00:00
1415
原创 Docker常用命令大全(一)
Docker容器化平台操作指南摘要:本文介绍了Docker的基本操作命令,包括:1)服务管理(启动/停止/重启);2)镜像操作(拉取/删除/保存);3)容器操作(运行/进入/查看日志);4)Docker Compose操作(多服务编排)。通过标准化容器打包应用及其依赖,Docker实现了"一次构建,到处运行"的云原生开发模式。这些命令涵盖了从基础服务控制到复杂应用部署的全流程操作。
2025-07-10 06:00:00
255
原创 什么是智能体(Agent)?
本文探讨了智能体(Agent)的概念及其核心特点。智能体是一种能够感知环境、自主决策并采取行动的人工智能系统,其发展离不开大语言模型的技术支撑。文章详细分析了智能体的四项核心能力:感知能力(从文本到多模态的演进)、规划能力(包括CoT、ToT等技术)、行动能力(从API调用到复杂操作)以及记忆能力(短期、长期和即时记忆)。相比传统大语言模型仅能处理简单任务,智能体通过整合这些能力,真正实现了自主完成任务的目标,成为人工智能领域实现自主性和智能行为的基本单位。
2025-07-09 06:00:00
771
原创 MinerU:高效智能PDF文档解析工具完全指南
摘要: MinerU是一款开源智能文档解析工具,专为将PDF高效转换为Markdown、JSON等结构化格式设计。支持多模态内容解析(文本、表格、公式、图片),具备OCR多语言识别能力,适用于复杂排版文档处理。提供本地部署方案,支持CPU/GPU/NPU加速,兼容Windows/Linux/macOS。主要功能包括自动清理文档元素、保持阅读顺序、结构化输出等。可通过命令行或API使用,支持HuggingFace/ModelScope模型源切换及本地模型部署,为LLM训练和AI应用提供高质量数据预处理方案。
2025-07-08 11:08:57
2728
原创 Linux系统安装微信
摘要 在Linux系统中安装微信的步骤如下:首先下载WeChatLinux_x86_64.deb安装包,然后使用sudo dpkg -i命令进行安装。安装完成后,系统应用程序管理界面会出现微信图标,用户即可登录使用。该过程简单快捷,解决了Linux系统运行微信的需求。
2025-07-07 11:31:24
509
原创 Python脚本(三)
本文提供了14个实用的Python脚本,涵盖文件操作、数据处理和图像处理等常见任务: 文件处理:包括复制/移动图片、对比文件夹差异、筛选非图片文件、统计文件数量等 数据处理:Excel文件操作如抽取指定列内容、比较两列数据、统计匹配值数量 图像处理:按长宽比筛选图片、关键词查找图片、MD5重命名、批量重命名图片 XML处理:归一化XML标签数据并转换为TXT格式 这些脚本使用标准库(os, shutil)和常用第三方库(Pandas, PIL),展示了Python在文件管理和数据处理方面的强大能力。
2025-07-05 06:00:00
410
原创 Promptfoo工具详解
promptfoo是一款开源的LLM评估工具,主要功能包括提示词对比测试、模型性能评估和安全测试。它支持多模型提供商(如OpenAI、Anthropic等)和本地部署模型,提供自动化断言检查、红队测试等功能。通过YAML配置文件,用户可以设置测试用例、提示词模板和评估标准,使用命令行工具运行评估并查看结果。promptfoo适用于开发者系统性地测试不同提示词版本和模型表现,但其标准化评估流程也可根据项目需求选择是否采用。该工具特别适合需要进行多模型对比和自动化质量检查的AI系统开发场景。
2025-07-05 06:00:00
1684
原创 基于知识图谱和Milvus的元数据入库流程
这是一个基于知识图谱增强的RAG(检索增强生成)系统,专门针对技术文档(特别是电力、变电站等工程领域)的知识管理和智能问答。该系统结合了知识图谱构建、向量数据库存储、向量检索、混合搜索和重排序等多种技术。
2025-06-06 17:31:39
843
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅