- 博客(5)
- 收藏
- 关注
原创 手写数字识别的神经网络算法设计与实现
一、实验目的通过学习BP神经网络技术,对手写数字进行识别,基于结构的识别法及模板匹配法来提高识别率。二、实验器材PC机 matlab软件三、实验内容按照BP神经网络设计方法选用两层BP网络,构造训练样本集,并构成训练所需的输入矢量和目标向量,通过画图工具,获得数字原始图像,截取图像像素为0的最大矩形区域,经过集合变换,变成16*16的二值图像,再进行反色处理,其图像数据特征提取为神经网络的输入向量。通过实验证实,BP神经网络应用于手写数字识别具有较高的识别率和可靠性。四、实验原理...
2021-11-22 23:40:22 588
原创 最小错误率的贝叶斯分类预习报告
一、实验目的本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯分类算法有一个深刻的认识二、实验原理1,贝叶斯分类算法 贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naïve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。2,几种算法本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯分类算法有一...
2021-11-22 11:15:04 105
原创 实验预习-势函数算法的迭代训练
实验三 势函数算法的迭代训练一.实验目的通过本实验的学习,使学生了解或掌握模式识别中利用势函数思想设计非线性判别函数的方法,能够实现模式的分类。学会运用已学习的先导课程如数据结构和算法设计知识,选用合适的数据结构完成算法的设计和程序的实现。并通过训练数据来建立非线性判别函数,通过代待分类样本进行分类预测,通过检查预测结果和数据的几何分布特性检验分类器的正确性。通过选用此种分类方法进行分类器设计实验,强化学生对非线性分类器的了解和应用,从而牢固掌握模式识别课程内容知识。二.实验内容假定...
2021-10-27 21:53:54 111
原创 matlab预习报告
算法介绍该算法以欧氏距离为基础,首先辨识最远的聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。例:样本分布如图所示。 实验内容见图所示,为二维点集 实验步骤1、提取分类特征,确定特征值值域,确定特征空间;2、编写聚类程序;3、将所提取的样...
2021-10-14 10:55:30 241
原创 matlab实验预习
算法介绍该算法以欧氏距离为基础,首先辨识最远的聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。例:样本分布如图所示。 实验内容见图所示,为二维点集 实验步骤1、提取分类特征,确定特征值值域,确定特征空间;2、编写聚类程序;3、将所提取的样本的加以聚类;4、...
2021-10-13 23:12:42 107
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人