LeetCode43.46.53题解
43. 字符串相乘
题目描述
给定两个以字符串形式表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积,它们的乘积也表示为字符串形式。
示例 1:
输入: num1 = “2”, num2 = “3”
输出: “6”
示例 2:
输入: num1 = “123”, num2 = “456”
输出: “56088”
说明:
- num1 和 num2 的长度小于110。
- num1 和 num2 只包含数字 0-9。
- num1 和 num2 均不以零开头,除非是数字 0 本身。
- 不能使用任何标准库的大数类型(比如 BigInteger)或直接将输入转换为整数来处理。
C++代码
class Solution {
public:
string multiply(string num1, string num2) {
if(num1.empty() || num2.empty())
return "";//为空
if(num1 == "0" || num2 == "0")
return "0";//乘0
int num1_size = num1.size();
int num2_size = num2.size();
vector<int> cache(num1_size + num2_size - 1);
for(int i = num1_size - 1; i >= 0; --i) {//每个元素单独相乘,进位相加
for( int j = num2_size - 1; j >= 0; --j) {
int index = i + j;
cache[index] += (num1[i] - '0') * (num2[j] - '0');
if(index-1 >= 0 && cache[index] >= 10) {
cache[index-1] += cache[index] / 10;
cache[index] = cache[index] % 10;
}
}
}
string result;
for(int value : cache) {
string str_value = "";
do {
str_value = char('0' + (value % 10)) + str_value;
value/=10;
}while(value != 0);
result += str_value;
}
return result;
}
}
46. 全排列
题目描述
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
C++代码
class Solution {//回溯算法
public:
vector<vector<int>> permute(vector<int>& nums) {
size = nums.size();
backtrace(nums);
return results;
}
void backtrace(vector<int> nums) {
if(tmp.size() == size) {
results.push_back(tmp);//临时数组数量等于目标数量时,存储到结果中
return;
}
for(int i=0; i<nums.size(); i++) {
int num = nums[i];
//将值存储在数组中,并删除该值
tmp.push_back(nums[i]);
swap(nums[i], nums[nums.size()-1]);
nums.pop_back();
backtrace(nums);//将已经删除使用过的值的数组,继续迭代
//将数组还原
nums.push_back(num);
swap(nums[i], nums[nums.size()-1]);
tmp.pop_back();
}
}
private:
vector<vector<int>> results;
vector<int> tmp;
int size;
};
53. 最大子序和
题目描述
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
C++代码
class Solution {//纯暴力
public:
int maxSubArray(vector<int>& nums) {
if(nums.size()==0) return NULL;
int res = nums[0];
int sum = 0;
for(int i = 0; i < nums.size(); ++i){
sum += nums[i];
res = max(sum, res);
if(sum < 0)
sum = 0;
}
return res;
}
};