- 量子力学的假设是经过长期的尝试与失败后而推导出来的,经过了发明者的大量猜测和摸索。对于这些假设,我们只需要掌握这些假设,懂得如何应用以及何时应用这些假设。
假设一(状态空间)
- 任一孤立物理系统都有一个称为状态空间的复内积空间(即希尔伯特空间)与之相联系,系统完全有状态向量所描述,这个向量是系统状态向量的一个单位向量。
示例
- 设
∣
0
⟩
|0\rangle
∣0⟩ 和
∣
1
⟩
|1\rangle
∣1⟩ 构成这个状态空间的一个标准正交基,则状态空间中的任意状态向量可写作:
∣ φ ⟩ = a ∣ 0 ⟩ + b ∣ 1 ⟩ |\varphi\rangle=a|0\rangle+b|1\rangle ∣φ⟩=a∣0⟩+b∣1⟩ - 设
∣
+
⟩
|+\rangle
∣+⟩ 和
∣
−
⟩
|-\rangle
∣−⟩ 构成这个状态空间的一个标准正交基,则状态空间的任意状态向量可以写作:
∣ φ ⟩ = a ∣ + ⟩ + b ∣ − ⟩ |\varphi\rangle=a|+\rangle+b|-\rangle ∣φ⟩=a∣+⟩+b∣−⟩
假设二(演化)
- 一个封闭量子系统的演化可以由一个酉变换来刻画。即系统在时刻 t1 的状态
∣
φ
⟩
|\varphi\rangle
∣φ⟩ 和系统在 t2 的状态
∣
φ
′
⟩
|\varphi'\rangle
∣φ′⟩,可以通过一个仅依赖于时间 t1 和 t2 的酉算子相联系:
∣ φ ⟩ = U ∣ φ ′ ⟩ |\varphi\rangle=U|\varphi'\rangle ∣φ⟩=U∣φ′⟩
示例
- Hadamard 门是一个酉算子,记作 H。
矩阵表示为:
H = 1 2 [ 1 1 1 − 1 ] H=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} H=21[111−1]
外积表示为:
H = ∣ 0 ⟩ ⟨ + ∣ + ∣ 1 ⟩ ⟨ − ∣ H=|0\rangle\langle+|+|1\rangle\langle-| H=∣0⟩⟨+∣+∣1⟩⟨−∣ - 假设初始状态
∣
φ
⟩
=
∣
0
⟩
|\varphi\rangle=|0\rangle
∣φ⟩=∣0⟩,
若用矩阵进行运算,
H ∣ φ ⟩ = H ∣ 0 ⟩ = 1 2 [ 1 1 1 − 1 ] [ 1 1 ] = 1 2 [ 1 1 ] = ∣ + ⟩ H|\varphi\rangle=H|0\rangle=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 1 \end{bmatrix}=|+\rangle H∣φ⟩=H∣0⟩=21[111−1][11]=21[11]=∣+⟩
若用外积进行运算,
H ∣ φ ⟩ = H ∣ 0 ⟩ = ( ∣ 0 ⟩ ⟨ + ∣ + ∣ 1 ⟩ ⟨ − ∣ ) ∣ 0 ⟩ = 1 2 ∣ 0 ⟩ ( ⟨ 0 ∣ + ⟨ 1 ∣ ) ∣ 0 ⟩ + 1 2 ∣ 0 ⟩ ( ⟨ 0 ∣ − ⟨ 1 ∣ ) ∣ 0 ⟩ = 1 2 ( ∣ 0 ⟩ + ∣ 1 ⟩ ) = ∣ + ⟩ H|\varphi\rangle=H|0\rangle=(|0\rangle\langle+|+|1\rangle\langle-|)|0\rangle\\=\frac{1}{\sqrt{2}}|0\rangle(\langle0|+\langle1|)|0\rangle+\frac{1}{\sqrt{2}}|0\rangle(\langle0|-\langle1|)|0\rangle\\=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle H∣φ⟩=H∣0⟩=(∣0⟩⟨+∣+∣1⟩⟨−∣)∣0⟩=21∣0⟩(⟨0∣+⟨1∣)∣0⟩+21∣0⟩(⟨0∣−⟨1∣)∣0⟩=21(∣0⟩+∣1⟩)=∣+⟩ - 同理,假设初始状态为
∣
φ
⟩
=
∣
1
⟩
|\varphi\rangle=|1\rangle
∣φ⟩=∣1⟩,经过 Hadamard 门之后,
H ∣ 1 ⟩ = 1 2 ( ∣ 0 ⟩ − ∣ 1 ⟩ ) = ∣ − ⟩ H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle H∣1⟩=21(∣0⟩−∣1⟩)=∣−⟩
假设三(一般测量)
- 量子测量由一组测量算子 {Mm} 描述,这些算子作用在被测系统状态空间上,指标 m 表示实验中可能的测量结果。若在测量前,量子系统的最新状态是
∣
φ
⟩
|\varphi\rangle
∣φ⟩,则结果 m 发生的可能性由
p ( m ) = ⟨ φ ∣ M m + M ∣ φ ⟩ p(m)=\langle\varphi|M_m^{+}M|\varphi\rangle p(m)=⟨φ∣Mm+M∣φ⟩
给出,且测量后的状态为:
∣ φ ′ ⟩ = M m ∣ φ ⟩ ⟨ φ ∣ M m + M ∣ φ ⟩ |\varphi'\rangle=\frac{M_m|\varphi\rangle}{\sqrt{\langle\varphi|M_m^{+}M|\varphi\rangle}} ∣φ′⟩=⟨φ∣Mm+M∣φ⟩Mm∣φ⟩
测量算子满足完备性方程
∑ m M m + M = I \sum_{m}M_m^{+}M=I m∑Mm+M=I - 在量子计算中,更多的使用投影测量。
投影测量
- 投影测量由被观测系统状态空间上的一个可观测量 Hermite 算子 M 描述。该可观测量具有谱分解
M = ∑ m m P m M=\sum_{m}mP_m M=m∑mPm
其中 Pm 是特征值 m 的本征空间 M 上的投影,测量的可能结果对应于测量算子的特征值 m。
测量状态为 ∣ φ ⟩ |\varphi\rangle ∣φ⟩ 时,得到结果 m 的概率为:
p ( m ) = ⟨ φ ∣ P m ∣ φ ⟩ p(m)=\langle\varphi|P_m|\varphi\rangle p(m)=⟨φ∣Pm∣φ⟩
测量后的状态为:
∣ φ ′ ⟩ = P m ∣ φ ⟩ p ( m ) |\varphi'\rangle=\frac{P_m|\varphi\rangle}{\sqrt{p(m)}} ∣φ′⟩=p(m)Pm∣φ⟩ - 投影测量可以视为假设 3 的特殊情况。设假设 3 中的测量算子处理满足完备性关系 ∑ m M m + M = I \sum_{m}M_m^{+}M=I ∑mMm+M=I 外,还满足 M m M_m Mm 是正交算子的条件,假设 3 就退化为投影测量。
- 投影测量具有许多好的性质,由定义投影测量的平均值为:
E ( M ) = ∑ m m p ( m ) = ∑ m ⟨ φ ∣ P m ∣ φ ⟩ = ⟨ φ ∣ ∑ m m P m ∣ φ ⟩ = ⟨ φ ∣ M ∣ φ ⟩ E(M)=\sum_mmp(m)=\sum_m\langle\varphi|P_m|\varphi\rangle=\langle\varphi|\sum_mmP_m|\varphi\rangle=\langle\varphi|M|\varphi\rangle E(M)=m∑mp(m)=m∑⟨φ∣Pm∣φ⟩=⟨φ∣m∑mPm∣φ⟩=⟨φ∣M∣φ⟩ - 可观测量 M 的平均值常写作: ⟨ M ⟩ = ⟨ φ ∣ M ∣ φ ⟩ \langle M\rangle=\langle\varphi|M|\varphi\rangle ⟨M⟩=⟨φ∣M∣φ⟩
- 可观测量 M 的标准差是:
[ Δ ( M ) ] 2 = ⟨ ( M − ⟨ M ⟩ ) 2 ⟩ = ⟨ M 2 ⟩ − ⟨ M ⟩ 2 [\Delta(M)]^2=\langle(M-\langle M\rangle)^2\rangle=\langle M^2\rangle-\langle M\rangle^2 [Δ(M)]2=⟨(M−⟨M⟩)2⟩=⟨M2⟩−⟨M⟩2
示例
- 对于给定状态
∣
φ
⟩
=
a
∣
0
⟩
+
b
∣
1
⟩
|\varphi\rangle=a|0\rangle+b|1\rangle
∣φ⟩=a∣0⟩+b∣1⟩,且测量可观测量 Z。
Z = [ 1 0 0 − 1 ] Z=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} Z=[100−1]
Z 的特征值分别为 λ 1 = 1 \lambda_1=1 λ1=1 和 λ 2 = − 1 \lambda_2=-1 λ2=−1,相应特征向量为:
ϵ 1 = [ 1 0 ] = ∣ 0 ⟩ 和 ϵ 2 = [ 0 1 ] = ∣ 1 ⟩ \epsilon_1=\begin{bmatrix} 1\\ 0 \end{bmatrix}=|0\rangle和\epsilon_2=\begin{bmatrix} 0\\ 1 \end{bmatrix}=|1\rangle ϵ1=[10]=∣0⟩和ϵ2=[01]=∣1⟩
根据定义,Pm 是特征值 m 的本征空间 M 上的投影,可以得出
P 1 = [ 1 0 ] [ 1 0 ] = ∣ 0 ⟩ ⟨ 0 ∣ 和 P − 1 = [ 0 1 ] [ 0 1 ] = ∣ 1 ⟩ ⟨ 1 ∣ P_1=\begin{bmatrix} 1\\ 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \end{bmatrix}=|0\rangle\langle0|和P_{-1}=\begin{bmatrix} 0\\ 1 \end{bmatrix}\begin{bmatrix} 0 & 1 \end{bmatrix}=|1\rangle\langle1| P1=[10][10]=∣0⟩⟨0∣和P−1=[01][01]=∣1⟩⟨1∣
这时,得到结果为 1 的概率为:
p ( 1 ) = ⟨ φ ∣ P 1 ∣ φ ⟩ = ( a ⟨ 0 ∣ + b ⟨ 1 ∣ ) ∣ 0 ⟩ ⟨ 0 ∣ ( a ∣ 0 ⟩ + b ∣ 1 ⟩ ) = ( a ⟨ 0 ∣ ∣ 0 ⟩ + b ⟨ 1 ∣ ∣ 0 ⟩ ) ( a ⟨ 0 ∣ ∣ 0 ⟩ + b ⟨ 0 ∣ ∣ 1 ⟩ ) = a 2 p(1)=\langle\varphi|P_1|\varphi\rangle=(a\langle0|+b\langle1|)|0\rangle\langle0|(a|0\rangle+b|1\rangle)\\=(a\langle0||0\rangle+b\langle1||0\rangle)(a\langle0||0\rangle+b\langle0||1\rangle)=a^2 p(1)=⟨φ∣P1∣φ⟩=(a⟨0∣+b⟨1∣)∣0⟩⟨0∣(a∣0⟩+b∣1⟩)=(a⟨0∣∣0⟩+b⟨1∣∣0⟩)(a⟨0∣∣0⟩+b⟨0∣∣1⟩)=a2
测量后的状态为:
∣ φ ′ ⟩ = P m ∣ φ ⟩ p ( m ) = ∣ 0 ⟩ ⟨ 0 ∣ ( a ∣ 0 ⟩ + b ∣ 1 ⟩ ) a 2 = a ∣ a ∣ ∣ 0 ⟩ |\varphi'\rangle=\frac{P_m|\varphi\rangle}{\sqrt{p(m)}}=\frac{|0\rangle\langle0|(a|0\rangle+b|1\rangle)}{\sqrt{a^2}}=\frac{a}{|a|}|0\rangle ∣φ′⟩=p(m)Pm∣φ⟩=a2∣0⟩⟨0∣(a∣0⟩+b∣1⟩)=∣a∣a∣0⟩
类似的,得到结果为 -1 的概率为: p ( − 1 ) = b 2 p(-1)=b^2 p(−1)=b2
测量后的状态为: ∣ φ ′ ⟩ = b ∣ b ∣ ∣ 1 ⟩ |\varphi'\rangle=\frac{b}{|b|}|1\rangle ∣φ′⟩=∣b∣b∣1⟩
平均值为:
⟨ M ⟩ = ⟨ φ ∣ M ∣ φ ⟩ = ( a ⟨ 0 ∣ + b ⟨ 1 ∣ ) ( ∣ 0 ⟩ ⟨ 0 ∣ − ∣ 1 ⟩ ⟨ 1 ∣ ) ( a ∣ 0 ⟩ + b ∣ 1 ⟩ ) = a 2 − b 2 \langle M\rangle=\langle\varphi|M|\varphi\rangle=(a\langle0|+b\langle1|)(|0\rangle\langle0|-|1\rangle\langle1|)(a|0\rangle+b|1\rangle)=a^2-b^2 ⟨M⟩=⟨φ∣M∣φ⟩=(a⟨0∣+b⟨1∣)(∣0⟩⟨0∣−∣1⟩⟨1∣)(a∣0⟩+b∣1⟩)=a2−b2
标准差为:
[ Δ ( M ) ] 2 = ⟨ M 2 ⟩ − ⟨ M ⟩ 2 = ( a ⟨ 0 ∣ + b ⟨ 1 ∣ ) ( ∣ 0 ⟩ ⟨ 0 ∣ − ∣ 1 ⟩ ⟨ 1 ∣ ) 2 ( a ∣ 0 ⟩ + b ∣ 1 ⟩ ) − ( a 2 − b 2 ) 2 = a 2 + b 2 − ( a 2 − b 2 ) 2 [\Delta(M)]^2=\langle M^2\rangle-\langle M\rangle^2\\=(a\langle0|+b\langle1|)(|0\rangle\langle0|-|1\rangle\langle1|)^2(a|0\rangle+b|1\rangle)-(a^2-b^2)^2\\=a^2+b^2-(a^2-b^2)^2 [Δ(M)]2=⟨M2⟩−⟨M⟩2=(a⟨0∣+b⟨1∣)(∣0⟩⟨0∣−∣1⟩⟨1∣)2(a∣0⟩+b∣1⟩)−(a2−b2)2=a2+b2−(a2−b2)2 - 对于给定状态
∣
φ
⟩
=
a
∣
0
⟩
+
b
∣
1
⟩
|\varphi\rangle=a|0\rangle+b|1\rangle
∣φ⟩=a∣0⟩+b∣1⟩,且测量可观测量 X。
X = [ 0 1 1 0 ] X=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} X=[0110]
X 的特征值分别为 λ 1 = 1 \lambda_1=1 λ1=1 和 λ 2 = − 1 \lambda_2=-1 λ2=−1,相应特征向量为:
ϵ 1 = 1 2 [ 1 1 ] = ∣ + ⟩ 和 ϵ 2 = 1 2 [ 1 − 1 ] = ∣ − ⟩ \epsilon_1=\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\ 1 \end{bmatrix}=|+\rangle和\epsilon_2=\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\ -1 \end{bmatrix}=|-\rangle ϵ1=21[11]=∣+⟩和ϵ2=21[1−1]=∣−⟩
根据定义,Pm 是特征值 m 的本征空间 M 上的投影,可以得出
P 1 = 1 2 [ 1 1 ] 1 2 [ 1 1 ] = ∣ + ⟩ ⟨ + ∣ 和 P − 1 = 1 2 [ 1 − 1 ] 1 2 [ 1 − 1 ] = ∣ − ⟩ ⟨ − ∣ P_1=\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\ 1 \end{bmatrix}\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \end{bmatrix}=|+\rangle\langle+|和P_{-1}=\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\ -1 \end{bmatrix}\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \end{bmatrix}=|-\rangle\langle-| P1=21[11]21[11]=∣+⟩⟨+∣和P−1=21[1−1]21[1−1]=∣−⟩⟨−∣
得到结果为 1 的概率为:
p ( 1 ) = ⟨ φ ∣ P 1 ∣ φ ⟩ = ( a ⟨ 0 ∣ + b ⟨ 1 ∣ ) ∣ + ⟩ ⟨ + ∣ ( a ∣ 0 ⟩ + b ∣ 1 ⟩ ) = ( a ⟨ 0 ∣ ∣ + ⟩ + b ⟨ 1 ∣ ∣ + ⟩ ) ( a ⟨ 0 ∣ ∣ − ⟩ + b ⟨ 0 ∣ ∣ − ⟩ ) = ( a 2 ⟨ 0 ∣ ( ∣ 0 ⟩ + ∣ 1 ⟩ ) + b 2 ⟨ 1 ∣ ( ∣ 0 ⟩ + ∣ 1 ⟩ ) ) ( a 2 ( ⟨ 0 ∣ + ⟨ 1 ∣ ) ∣ 0 ⟩ + b 2 ( ⟨ 0 ∣ + ⟨ 1 ∣ ) ∣ 1 ⟩ ) = ( a 2 + b 2 ) 2 p(1)=\langle\varphi|P_1|\varphi\rangle=(a\langle0|+b\langle1|)|+\rangle\langle+|(a|0\rangle+b|1\rangle)\\=(a\langle0||+\rangle+b\langle1||+\rangle)(a\langle0||-\rangle+b\langle0||-\rangle)\\=(\frac{a}{\sqrt{2}}\langle0|(|0\rangle+|1\rangle)+\frac{b}{\sqrt{2}}\langle1|(|0\rangle+|1\rangle))(\frac{a}{\sqrt{2}}(\langle0|+\langle1|)|0\rangle+\frac{b}{\sqrt{2}}(\langle0|+\langle1|)|1\rangle)\\=(\frac{a}{\sqrt{2}}+\frac{b}{\sqrt{2}})^2 p(1)=⟨φ∣P1∣φ⟩=(a⟨0∣+b⟨1∣)∣+⟩⟨+∣(a∣0⟩+b∣1⟩)=(a⟨0∣∣+⟩+b⟨1∣∣+⟩)(a⟨0∣∣−⟩+b⟨0∣∣−⟩)=(2a⟨0∣(∣0⟩+∣1⟩)+2b⟨1∣(∣0⟩+∣1⟩))(2a(⟨0∣+⟨1∣)∣0⟩+2b(⟨0∣+⟨1∣)∣1⟩)=(2a+2b)2
测量后的状态为:
∣ φ ′ ⟩ = P m ∣ φ ⟩ p ( m ) = ∣ + ⟩ ⟨ + ∣ ( a ∣ 0 ⟩ + b ∣ 1 ⟩ ) ( a 2 + b 2 ) 2 = 1 2 ( ∣ 0 ⟩ + ∣ 1 ⟩ ) ( ⟨ 0 ∣ + ⟨ 1 ∣ ) ( a ∣ 0 ⟩ + b ∣ 1 ⟩ ) = 1 2 ( ∣ 0 ⟩ + ∣ 1 ⟩ ) ( a + b ) = a + b 2 ∣ + ⟩ |\varphi'\rangle=\frac{P_m|\varphi\rangle}{\sqrt{p(m)}}=\frac{|+\rangle\langle+|(a|0\rangle+b|1\rangle)}{\sqrt{(\frac{a}{\sqrt{2}}+\frac{b}{\sqrt{2}})^2}}\\=\frac{1}{2}(|0\rangle+|1\rangle)(\langle0|+\langle1|)(a|0\rangle+b|1\rangle)\\=\frac{1}{2}(|0\rangle+|1\rangle)(a+b)\\=\frac{a+b}{\sqrt{2}}|+\rangle ∣φ′⟩=p(m)Pm∣φ⟩=(2a+2b)2∣+⟩⟨+∣(a∣0⟩+b∣1⟩)=21(∣0⟩+∣1⟩)(⟨0∣+⟨1∣)(a∣0⟩+b∣1⟩)=21(∣0⟩+∣1⟩)(a+b)=2a+b∣+⟩
同样的,也可以得到结果为 -1 的概率和测量后的状态,以及平均值和标准差。
假设四(复合系统)
- 符合物理系统的状态空间是分物理系统状态空间的张量积,若将分系统编号为 1 到 n,系统 j 的状态被置为
∣
φ
j
⟩
|\varphi_j\rangle
∣φj⟩,则整个系统的总状态为:
∣ φ 1 ⟩ ⊗ ⋯ ⊗ ∣ φ n ⟩ |\varphi_1\rangle\otimes\dots\otimes|\varphi_n\rangle ∣φ1⟩⊗⋯⊗∣φn⟩