在使用Pandas的 pd.merge() 报错:ValueError: You are trying to merge on int64 and object columns.

以下这是我的处理这个问题的方式

1. 原因

df_data = pd.merge( df_1, df_2, on=['A', 'B'] )

如果df_1里面的A或B的类型和df_2里面的数据类型不同,一般情况是字符串(str)和数据类型(int,float)的不同,在运行时,就会出现报错:ValueError: You are trying to merge on int64 and object columns.

2.解决方法 :把df_1和df_2的对应的on=['A', 'B'] 数据类型统一化,即可。

例如:

df1_1的字段A是数据类型,df1_2的字段A是字符串类型,那么统一成字符串类型就行了。

多加一行代码:df_1['A'] = df_1['A'].astype(str)

然后在进行后面的合并 df_data = pd.merge( df_1, df_2, on=['A', 'B'] ) 即可。

还有其他的方式解决,多尝试即可。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值