该示例模型可通过帮助菜单中的演示案例获取。运行此案例需确保您的许可证包含液压元件库(Hydraulic Library)的访问权限。
在结果文件中会记录不连续点(discontinuities)的数值变化
状态变量贡献度分析工具
启动仿真,打开性能分析器(Performance Analyzer),并查看运行统计(Run statistics)面板。
请观察以上两幅曲线图:
- CPU时间曲线(上图)
- 呈现先线性后抛物线的变化趋势
- 使用游标定位趋势转变时间点(约3.5秒处)
- 频率特性分析
- 初始时刻振荡模态的最高频率约3500Hz
- 对应阻尼比处于较低水平
当前分析重点在于定位导致仿真速度下降的关键变量,请按以下步骤操作:
- 调出状态变量贡献度面板
- 在"Controlled"(受控度)列执行降序排序
- 双击排序结果中最顶部的变量
- 关键变量分析结果
▶ 首要受控变量:质量块速度(动力学核心参数)
▶ 次要受控变量:作动器2号端口压力(液压系统关键状态)
现在,请通过变量列表底部的 全选/取消全选 复选框取消所有变量的选中状态,然后重新勾选之前分析的那两个关键变量。
关键变量贡献度分析结果 - 累积贡献度特性
- 两变量累积贡献度长期保持水平且为零值
- 贡献度开始上升的时刻与CPU时间曲线趋势变化点完全同步
- 表明该时间点在系统中具有特殊物理意义
- 瞬时贡献度特性
- 3.5秒后变量活跃度突增的灵敏指标
- 对大型系统仿真特别有效:可精准捕捉不同仿真阶段激活的变量群
- 质量块位移分析
▶ 1kg质量块位移曲线显示:- 特征时间点对应质量块抵达作动器机械限位时刻
- 位移曲线未见明显振荡,可排除其导致仿真减速的可能性
现在绘制同一质量块的速度曲线——这是最主要的受控变量。
“求解器速度下降的原因现已明确:接触发生时,速度开始剧烈振荡。绘制执行器端口2的压力曲线。”
这种情况下,当接触发生时压力会出现剧烈振荡。由于压力值会降至0巴以下,将产生气穴现象(从而导致计算难度增加)。若能通过包含线性分析的更深入研究,观察接触发生时的振荡模态将会很有价值。
这些观测结果表明,质量块与执行器之间的接触参数配置不当。请进入参数模式并核查执行器的参数设置。
止动装置的阻尼系数被设置为零,这正是导致数值问题的原因。
此处的阻尼系数(c)需按以下公式计算:
c
=
2.
z
.
k
.
M
\mathbf{c}=2.\mathbf{z}.\sqrt{\mathrm{k.M}}
c=2.z.k.M
其中:
c
c
c 为阻尼系数(单位:N/(m/s))
z
z
z 为阻尼比
k
k
k 为止动装置弹簧刚度(
1
∗
e
9
1*e9
1∗e9 N/m)
M
M
M为质量(1 kg)
我们将阻尼比固定为10%,因该值最能体现物理现象本质。
故在名为"快速仿真"的实验中设置了新阻尼系数值。操作步骤如下:
- 切换至仿真模式
- 选择该实验
- 通过视图菜单激活实验窗口(路径:视图>显示/隐藏>实验视图)
现在启动新一轮仿真运行,并打开性能分析器。
新模型的求解时间从修改前的18秒缩短至6秒,实现了惊人的300%加速比。
请绘制以下曲线:
- 质量块速度
- 执行器端口2压力
(曲线颜色标识: 红色:修改后参数 绿色:修改前参数)
可以观察到,在调整阻尼系数后,系统振荡显著减少。
本案例再次印证了子模型参数化的重要性——尤其是阻尼参数的设定对系统性能往往具有决定性影响。
“不连续性”窗格工具
通过状态贡献度分析,我们已了解如何快速定位模型中存在问题的区域。接下来将展示如何通过不连续点分析面板实现相同功能。
操作步骤:
- 从原始演示案例重新开始
- 重点关注 t = 3.5 秒附近时段】、
在"不连续点分析"面板中可见,系统中主要的不连续性仅由两个子模型引起:
• 液压泵
• 执行器
请切换至曲线选项卡,以便更清晰地观察这两个子模型所生成事件的时域分布特征:
执行器子模型的瞬时作用恰好发生在仿真器整体开始减速的时间段。该执行器在约120毫秒内产生了近1900个不连续点——这正解释了当前积分时间步长的变化形态,因为求解器在每个不连续事件后都会重新启动。
(技术成因说明:
∵ 单个不连续事件 → 求解器重启
∵ 1900次事件/120ms → 时间步长剧烈波动)
接下来我们将重新采用建议的执行器阻尼系数参数化方案,将其应用于当前系统后重新启动积分运算。
经参数优化后,执行器产生的不连续点占比已降至近乎可忽略水平,系统积分性能显著改善。