数据结构与算法(5)--树

树:
线性表都是一对一的线性结构,而树(Tree)是n(n>=0)个结点的有限集。当n=0时成为空树,在任一颗非空树中:

1.有且仅有一个特定的称为根(Root)的结点;即**根结点唯一**
2.当n>1时,其余结点可分为m(m>0)个**互不相交**的有限集T1、T2....Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。

结点分类:
每一个子母代表一个结点。结点拥有的子树称为结点的度-(Degree),树的度取树内各结点的度的最大值。

度为0的结点称为叶结点(Leaf)或终端结点;
度不为0的结点称为分支结点或非终端结点,除根结点外,分支结点也称为内部结点。

如图示:
在这里插入图片描述
结点间的关系:
结点的子树称为结点的孩子,相应的,该结点称为孩子的双亲,同一双亲的孩子之间互称为兄弟。
结点的祖先是从根到该结点所经分支上的所有结点。
结点的层次:
结点的层次是从根开始定一起,根为第一层,根的孩子为第二层,其双亲在同一层的结点互为堂兄弟
树中结点最大的层次称为树的深度(Depth)或高度。
在这里插入图片描述
其他概念:
如果树中结点的各子树看成从左至右是有次序的,不能互换的,则称为该树为有序树,否则称为无序数。
森林是m(m>0)课互不相交的树的集合。对树中每个结点而言,其子树的集合即为森林。

树的存储结构:
1.双亲表示法
即以双亲为索引的关键词的一种存储方式(前序遍历):
双亲表示法的特点就是每一个节点里面除了存放节点数据之外,还存放着该节点的双亲节点位置。
在这里插入图片描述

#include<iostream>
#define maxTree 100
using namespace std;
typedef struct//双亲节点
{
   
	string data;//节点数据
	int parent;//节点的双亲节点下标
}Pparent;
typedef struct
{
   
	Pparent nodes[maxTree];//节点数组
	int r, n;//r存放根的位置,n代表节点数目
}Pnode;

孩子表示法:
孩子表示法的特点就是每个节点除了存放节点数据,还存放该节点的孩子节点位置。
存放孩子有两种方式,一种就是最简单的。获取该树的度(也就是各子树中度最大的那个),然后设置孩子节点的数目为度的大小。不过该方法容易造成空间浪费。
另一种方法是用指针指向孩子节点,这样可以有效节省空间。

#include<iostream>
#define maxTree 100
using namespace std;
typedef struct//孩子节点
{
   
	int chird;//孩子节点下标
	Pchird* next;//下一个孩子节点指针
}*Pchird;
typedef struct//双亲节点
{
   
	string data;//节点数据
	Pchird firstChird;//表头节点的第一个孩子节点
}Pparent;
typedef struct
{
   
	Pparent nodes[maxTree];//节点数组
	int r, n;//r存放根的位置,n代表节点数目
}Pnode;

双亲孩子表示法:
由于树中每个结点可能有多颗子树,考虑用多重链表实现:
双亲孩子表示法的结构特点就是在每一个节点里面除了存放数据之外,还都存放着该节点的双亲节点的位置,也存放着该节点的孩子节点的位置。
在这里插入图片描述

#include<iostream>
#define maxTree 100
using namespace std;
typedef struct//孩子节点
{
   
	int chird;//孩子节点下标
	Pchird* next;//下一个孩子节点指针
}*Pchird;
typedef struct//双亲节点
{
   
	string data;//节点数据
	int parent;//节点的双亲节点下标
	Pchird firstChird;//表头节点的第一个孩子节点
}Pparent;
typedef struct
{
   
	Pparent nodes[maxTree];//节点数组
	int r, n;//r存放根的位置,n代表节点数目
}Pnode;

二叉树的定义:
二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。即每个结点的子树<=2,并非每个结点都有两个子树
二叉树的五种基本形态:

1.空二叉树
2.只有一个根结点
3.根结点只有左子树
4.根结点只有右子树
5.根结点既有左子树,又有右子树

斜树: 子树均左斜或者均右斜,方向一致
满二叉树:在一棵二叉树中,所有的分支结点都存在左子树和右子树,且所有叶子都在最下一层上。
完全二叉树:对一棵具有n个结点的二叉树按层序编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点位置完全相同,则这棵二叉树称为完全二叉树。

 特点:
 叶子结点只能出现在最下两层;
 最下层的叶子一定集中在左部连续位置
 倒数第二层,若有叶子结点,一定都在右部连续位置
 如果结点度为1,则该结点只有左孩子
 同样结点树的二叉树,完全二叉树的深度最小

注:即层序遍历时,中间无丢值

二叉树的性质:

1.在二叉树的第i层上至多有2^(i-1)个结点(i>=1)
2.深度为K的二叉树至多有2^K-1个结点(K>=1)(当其为满二叉树时,且满二叉树的深度为K = log2(n+1))
3.对于任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
4.**具有n个结点**的完全二叉树的深度为K=【log2n】+1

二叉树的存储结构:
1.二叉树的顺序存储结构就是用一维数组存储二叉树的各个结点,并且结点的存储位置能体现结点之间的逻辑关系。若树不为完全二叉树,则不存在的结点用‘^’表示
2.二叉链表,二叉树每个结点最多有两个孩子,所以为其设计一个数据域和两个指针域,我们称为这样的链表为二叉链表。

二叉树的遍历(traversing binary tree):
指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

遍历方式:
1.前序遍历
2.中序遍历
3.后序遍历
4.层序遍历

前序遍历:
若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。
在这里插入图片描述

void PreorderTraversal(treeNode* node)
{
   
	if (node == NULL)
		return;
	else
	{
   
		std::cout << node->data <<"->";

		if (node
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值