二叉树详解

前言

哈喽,小伙伴们大家好,相信对数据结构有一定了解的小伙伴对树这个名字都不陌生。今天,我将为大家介绍以下什么是树,并主要介绍一种树中的特殊结构——二叉树

一.树形结构(了解)

1.概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

它具有以下的特点:   

1.有一个特殊的结点,称为根结点,根结点没有前驱结点。(根节点:没有父节点的节点就称为这棵树的根节点,在一棵树中根节点有且只有一个。)

2.除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm子树之间不能相交,若相交,不是树结构~),其中每一个集合Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。(子树的树根是否有多个节点,若存在多个父节点,说明该子树存在相交,该结构也就不是树~)

3.树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构


 2.概念(重要)

结点的度:一个结点含有子树的个数(直接子节点)称为该结点的度; 如上图:A的度为6

树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6  

(所谓的N叉树---这个N就是树的度 上图也可以叫做6叉树)

叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点

双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点   (度不为0的节点都是双亲/父节点)

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点       (只要是父节点下方的节点,都属于该节点的子节点。D是A的直接子节点,H也是A的子节点)

根结点:一棵树中,没有双亲结点的结点;如上图:A 结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推

树的高度或深度:树中结点的最大层次;如上图:树的高度为4

如上图:树的高度为4 树的以下概念只需了解,在看书时只要知道是什么意思即可:

非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点

兄弟结点:具有相同直接父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点

堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点

结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。上图:所有结点都是A的子孙

森林:由m(m>=0)棵互不相交的树组成的集合称为森林(树的集合就是森林,包含了若干个互不相交的树)

 3.树的表示(了解)-树的节点存储

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法, 孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法

class Node {

    int value; // 树中存储的数据                                      

    Node firstChild; // 第一个孩子引用

    Node nextBrother; // 下一个兄弟引用

}

class Node{

        pubilic int val;

        public List<Node> children;

}

 3.树的应用

看到树结构:天然高效进行查找(搜索)的结构!!!

文件系统管理(目录和文件)

二.二叉树(重点)

1.概念

一棵二叉树是结点的一个有限集合,该集合:1. 或者为空  2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。(一颗二叉树中,节点的度最大为2。在二叉树中节点的度小于等于2,只有三种情况:度为0的节点-叶子节点,度为1的节点和度为2的节点。)

从上图可以看出:

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:以Node为根的二叉树都存在以下几种情况

 2.两种特殊的二叉树

满二叉树:当前这棵树中,每一层节点都达到最大值的二叉树。每一层子节点都拉满,除了叶子节点以外,所有父节点的度都为2。节点个数N和层数K的关系:N = 2^K - 1。满二叉树代表了一颗高度为K的二叉树中最多的节点个数。在一个高度为K的二叉树中,最多可能有2^k - 1个节点(该二叉树就是一颗满二叉树)。

完全二叉树---教材定义:若一颗二叉树的节点编号和对应的满二叉树节点编号一一对应,则该二叉树是一颗完全二叉树。    自己理解:完全二叉树看做两个阶段----第一阶段:每个节点都是度位2的节点;第二阶段:当碰到第一个度为1的节点或者度为0的节点开始,转为第二阶段,在第二阶段中,所有节点都是叶子节点!!!转阶段之后不包括转阶段的节点。只要在第二阶段中找到反例,该二叉树一定不是完全二叉树!

3.二叉树的性质

3.1 二叉树的第一个特点,关于完全二叉树的节点编号问题

完全二叉树使用数组存储,关键就是这个编号之间的关系:

若根节点从1开始编号,则在当前完全二叉树中,若某个节点的编号为X,且该节点存在左右孩子,则孩子和父节点的编号存在以下关系:左孩子的编号为2X,右孩子的编号为2X+1;若存在父节点,则父节点的编号为X/2(只保留整数部分)。

若根节点从0开始编号,则在当前完全二叉树中,若某个节点的编号为X,且该节点存在左右孩子,则孩子和父节点的编号存在以下关系:左孩子的编号为2X+1,右孩子的编号为2X+2;若存在父节点,则父节点的编号为(X-1)/ 2---(只保留整数部分)。

 3.2 二叉树的节点规律

3.2.1节点和树的高度的关系:

一个高度为k的二叉树中最多存在是 2^k - 1(k>=0)个节点(此时是一颗满二叉树)。

若一个二叉树的节点个数为N,则该二叉树的高度为log2 (N+1)---向上取整。

eg:此时N = 13,二叉树的高度-log2 (13+1) ==>4

3.2.2 节点所在的层数为X,则该层最多有2^(X-1)个节点

eg:X == 3,第三层最多有4个节点 N == 2^(3-1) = 2^2 = 4。

3.2.3 在任意的一个二叉树中,度为2的节点N2和度为0的节点N0-------> N2 = N0 - 1

eg:在树中,节点的个数 = 边长 + 1。在二叉树中,N2+ N1+N0 = 2N2+N1+1==> N2 = N0 - 1

3.3 二叉树练习题

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为(B)

A.不存在这样的二叉树 B.200 C.198 D.199

解析:N2 = N0 -1 ===》 N0 = N2 + 1 = 199 + 1 = 200

2.在具有 2n 个结点的完全二叉树中,叶子结点个数为(A)

A.n B.n+1 C.n-1 D.n/2

解析:N2 + N1 + N0 =  N0 - 1 + 1 + N0 = 2n ===》 N = n

在完全二叉树中,度为1的节点只可能是0或者1======只有一条边的节点只可能存在1个或者1个都不存在

记住结论:当完全二叉树是偶数个节点,则度为1的节点个数为1。当完全二叉树是奇数个节点,则不存在度为1的节点。

3.一个具有767个节点的完全二叉树,其叶子节点个数为(B)

A.383 B.384 C.385 D.386

解析:N2 + N1 + N0 = N0 - 1 + N0 = 767 = 》2N0 = 768 =》N0 = 384

4.一棵完全二叉树的节点数为531个,那么这棵树的高度为(B)

A.11 B.10 C.8 D.12

解析:log2 (n + 1) = log2 532 =》 10

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
二叉树的前序遍历和中序遍历可以确定一棵二叉树,因此可以通过已知的前序遍历和中序遍历来构建出一棵二叉树。而求解二叉树的后序遍历则需要使用递归来实现。 具体的算法流程如下: 1. 如果前序遍历序列和中序遍历序列为空,则返回空节点; 2. 取前序遍历序列的第一个元素作为根节点; 3. 在中序遍历序列中找到根节点,确定左子树和右子树的中序遍历序列; 4. 根据左子树的中序遍历序列和前序遍历序列递归构建左子树; 5. 根据右子树的中序遍历序列和前序遍历序列递归构建右子树; 6. 将根节点加入后序遍历序列中; 7. 返回根节点。 下面是代码实现: ``` #include <iostream> #include <vector> using namespace std; // 二叉树节点结构体 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; // 根据前序遍历序列和中序遍历序列构建二叉树 TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty() || inorder.empty()) { return nullptr; } // 取前序遍历序列的第一个元素作为根节点 int root_val = preorder[0]; TreeNode* root = new TreeNode(root_val); // 在中序遍历序列中找到根节点,确定左子树和右子树的中序遍历序列 int root_idx = 0; for (int i = 0; i < inorder.size(); i++) { if (inorder[i] == root_val) { root_idx = i; break; } } vector<int> left_inorder(inorder.begin(), inorder.begin() + root_idx); vector<int> right_inorder(inorder.begin() + root_idx + 1, inorder.end()); // 根据左子树的中序遍历序列和前序遍历序列递归构建左子树 vector<int> left_preorder(preorder.begin() + 1, preorder.begin() + 1 + left_inorder.size()); root->left = buildTree(left_preorder, left_inorder); // 根据右子树的中序遍历序列和前序遍历序列递归构建右子树 vector<int> right_preorder(preorder.begin() + 1 + left_inorder.size(), preorder.end()); root->right = buildTree(right_preorder, right_inorder); return root; } // 后序遍历二叉树 void postorder(TreeNode* root, vector<int>& ans) { if (root != nullptr) { postorder(root->left, ans); postorder(root->right, ans); ans.push_back(root->val); } } int main() { vector<int> preorder = {1, 2, 4, 5, 3, 6}; vector<int> inorder = {4, 2, 5, 1, 3, 6}; TreeNode* root = buildTree(preorder, inorder); vector<int> ans; postorder(root, ans); for (int i = 0; i < ans.size(); i++) { cout << ans[i] << " "; } cout << endl; return 0; } ``` 输出结果为: ``` 4 5 2 6 3 1 ``` 这就是二叉树的后序遍历序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹿小伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值