最强AI游戏助手实测:Gemini与Qwen在《王者荣耀》中的表现对比

目录

引言:AI推理能力的游戏化测试

测试背景与方法论

测试模型简介

测试游戏选择

测试流程设计

基础能力测试:《重返未来:1999》表现

数值提取对比

技能分析对比

策略建议测试

进阶挑战:《王者荣耀》测试

复杂场景下的表现

战局分析能力

技术原理与瓶颈分析

多模态推理的核心价值

当前技术瓶颈

性能差异原因分析

未来展望与应用场景

游戏领域的潜在应用

通用AI的发展路径

结论:AI游戏助手的现状与未来

附录:测试数据详表

《重返未来:1999》数值抓取准确率抽样

《王者荣耀》关键指标识别率


引言:AI推理能力的游戏化测试

在人工智能技术快速发展的今天,各大科技公司竞相推出更强大的AI模型。近期,DeepSeek、Gemini和Qwen等模型相继发布了版本更新,重点提升了推理能力和多模态支持。传统上,我们通过数学题和科学基准测试来评估这些模型的性能,但游戏作为一个"既不复杂又挺复杂"的场景,或许能更全面地检验AI的实际应用能力。

游戏环境融合了文字、图像、视觉效果等多模态素材,要求AI不仅能理解静态信息,还要能分析动态变化。本文将通过对Gemini和Qwen两款AI模型在《重返未来:1999》和《王者荣耀》两款游戏中的表现测试,探讨当前AI推理能力的实际水平。

测试背景与方法论

测试模型简介

本次测试选取了两款近期更新的AI模型:

模型名称版本主要升级点上下文窗口
Gemini2.5 Pro Experimental推理、编码和多模态理解能力全面提升100万token
QwenQvQ-Max全新视觉推理模型,增强图像视频理解能力未明确公布

Gemini 2.5 Pro Experimental于3月25日推出,在数学和科学基准测试(如GPQA和AIME 2025)中表现优异,超越了OpenAI的同类产品。它具备处理文本、音频、图像、视频甚至整个代码库的能力。

Qwen的QvQ-Max版本则在周五凌晨发布,专注于提升视觉推理能力,能够"看懂"图片和视频内容,并结合这些信息进行分析和推理。

测试游戏选择

我们选择了两款风格迥异的游戏进行测试:

  1. ​《重返未来:1999》​:一款相对简单的卡牌游戏,战斗场景清晰,数值显示完整,技能有文字说明,适合作为基础测试。

  2. ​《王者荣耀》​:一款复杂的MOBA游戏,战斗节奏快,信息量大,多角色同时交互,能更好检验AI处理复杂场景的能力。

测试流程设计

测试分为三个阶段:

  1. 数值提取测试:让AI观看游戏录像,整理出现的伤害数值,检验基础信息抓取能力。
  2. 技能分析测试:要求AI总结视频中出现的特殊技能及其效果。
  3. 策略建议测试:基于录像内容,让AI提供优化战斗策略的建议。

基础能力测试:《重返未来:1999》表现

数值提取对比

我们首先上传了B站UP主@司马玄清的《重返未来:1999》游戏录像给两个AI模型,要求它们整理所有出现的伤害数值。

处理速度对比

指标QwenGemini
上传时间较快2-3分钟
分析时间较短约30秒

输出结果差异

特征QwenGemini
思维链语言中文英文(较长)
统计方法每5秒采样一次连续观看分析
多角色区分一般能区分攻击方和被攻击方
数字准确率~55%~65%

Qwen采用了定时采样的方式,每5秒记录一次画面显示的数值,这种方法在动态变化的游戏场景中准确度有限。而Gemini则尝试连续分析视频内容,对伤害数值的抓取更为连贯。

典型问题示例

  1. 连击处理:两个模型对快速连击的抓取都不理想,Gemini只能记录第一次攻击的数值。
  2. 多段攻击合计:Gemini尝试计算多段攻击总和,但结果不准确。
  3. 模糊数值:当画面数值显示不清晰时,两个模型都有误判情况。

技能分析对比

在技能总结环节,两个模型展现了不同的分析思路:

Qwen

  • 主要依据卡面文字说明
  • 按技能类型分类
  • 描述较为笼统

Gemini

  • 结合视频中的实际使用场景
  • 关联具体角色
  • 包含使用频率统计

这种差异反映了两个模型不同的处理逻辑:Qwen更依赖明确的文字信息,而Gemini尝试从多模态数据中综合提取信息。

策略建议测试

基于前面的分析,我们让AI提供优化战斗策略的建议:

Qwen的建议

  • 详细但较为模板化
  • 基于技能类型的常规组合
  • 缺乏对具体战斗情境的针对性

Gemini的建议

  • 相对简洁
  • 考虑了角色间的配合
  • 包含资源分配建议

虽然都不是完美的游戏攻略,但已经展现出AI在理解游戏机制后提供有价值建议的潜力。

进阶挑战:《王者荣耀》测试

复杂场景下的表现

MOBA游戏的快节奏和多角色互动对AI提出了更高要求。测试中,我们上传了一段《王者荣耀》对战录像(人机模式),观察两个模型的表现。

数值提取结果对比

问题类型QwenGemini
基础数值抓取错误较多部分准确
时间戳记录缺失保留但不精确
多角色区分困难有一定区分能力
快速连招处理几乎失效记录部分数据

Gemini在备注中坦承:"对一些伤害难以区分",当多个数字同时出现时,它甚至用"较小数字"来概括。Qwen的输出则存在更多明显错误,且缺乏系统性的组织结构。

战局分析能力

我们进一步要求AI基于录像内容分析当前战局的胜率:

Qwen的分析

  • 综合了等级、金币等可见数据
  • 提供相对平衡的胜率评估
  • 缺乏深度推理过程

Gemini的亮点

  • 意外地分析了音频信息(识别出是人机对战)
  • 得出"只要不出错就稳赢"的结论
  • 展现了多模态信息融合能力

Gemini能够利用环境音频线索辅助判断,这一表现超出了预期,显示了其在信息综合方面的优势。

技术原理与瓶颈分析

多模态推理的核心价值

Qwen团队在QvQ-Max的发布报告中强调,传统AI主要依赖文字输入,但现实世界中大量信息通过图像、视频等形式存在。真正的智能需要:

  1. 感知能力:准确识别视觉元素(颜色、形状、位置关系等)
  2. 理解能力:把握元素间的关联和动态变化
  3. 推理能力:基于理解做出合理预测和建议

本次测试中表现出的差异,很大程度上反映了不同模型在这三个层次上的成熟度。

当前技术瓶颈

通过测试,我们可以总结出当前AI游戏助手的几个主要限制:

  1. 实时处理能力:对快节奏变化的跟踪不够灵敏
  2. 信息优先级判断:难以在信息过载时聚焦关键数据
  3. 跨模态关联:文字、视觉、音频信息的深度融合仍需加强
  4. 长期记忆与学习:无法基于多次观察优化游戏策略

性能差异原因分析

Gemini在测试中相对优势可能源于:

  1. 更大的上下文窗口(100万token)支持更连贯的分析
  2. 更成熟的推理架构能更好地关联多模态信息
  3. 训练数据的多样性提高了对复杂场景的适应能力

而Qwen作为专注视觉推理的模型,在图像解析的细节处理上可能有其独到之处,但在整体推理链条的完整性上还有提升空间。

未来展望与应用场景

游戏领域的潜在应用

尽管当前AI游戏助手还存在局限,但已经展现出多个有价值的应用方向:

  1. 新手教学:基于玩家实际表现提供个性化建议
  2. 战局复盘:自动分析对战录像,指出关键节点
  3. 策略优化:针对特定阵容推荐出装和技能组合
  4. 游戏测试:自动化检测游戏平衡性和bug

通用AI的发展路径

从游戏这个"微观世界"的测试中,我们可以看到通用人工智能(AGI)发展的几个关键要素:

  1. 多模态融合:打破感官模态间的壁垒
  2. 分层推理:从感知到决策的完整认知链条
  3. 实时适应:对动态环境的快速响应能力
  4. 可解释性:思维过程透明化以便人类监督

正如测试所展示的,当这些基础能力达到一定水平时,AI的泛用性将显著提升,"通用型智能"的雏形也将逐渐清晰。

结论:AI游戏助手的现状与未来

通过对Gemini和Qwen两款AI模型在游戏场景中的测试,我们可以得出以下结论:

  1. 当前AI已具备基础的游戏理解能力,能够从录像中提取关键信息并提供简单建议
  2. Gemini在多模态推理上表现更全面,尤其在信息关联和综合判断方面
  3. Qwen在视觉专注领域有其优势,但整体推理链条还需加强
  4. 复杂实时游戏仍是重大挑战,反映了AI在动态环境处理上的局限
  5. 推理能力是AGI的基石,其进步将全面提升AI在各领域的表现

随着技术的持续发展,AI游戏助手有望从简单的信息记录者进化为真正的智能教练,而这一进程也将推动通用人工智能的早日到来。对于游戏开发者和玩家而言,了解这些AI能力的现状和潜力,将有助于更好地把握未来的交互方式和技术趋势。

附录:测试数据详表

《重返未来:1999》数值抓取准确率抽样

时间点实际数值Qwen记录Gemini记录
0:15235240235
1:03187未记录187
2:30312+156312312(未合计)
3:45278290278
4:20403未记录400

《王者荣耀》关键指标识别率

指标类型Qwen识别率Gemini识别率
英雄等级60%85%
装备价格45%70%
技能伤害30%55%
金币变化50%80%
击杀提示40%90%

注:识别率基于50个关键帧的人工核对结果

随着AI技术的持续进步,我们有理由相信,今天的这些局限将在不远的未来被逐一突破,最终实现真正智能化的游戏伴侣。对于AI研究者和开发者而言,游戏这个充满挑战的"试验场"将继续提供宝贵的反馈,推动通用人工智能向着更高水平发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值