目录
引言:AI推理能力的游戏化测试
在人工智能技术快速发展的今天,各大科技公司竞相推出更强大的AI模型。近期,DeepSeek、Gemini和Qwen等模型相继发布了版本更新,重点提升了推理能力和多模态支持。传统上,我们通过数学题和科学基准测试来评估这些模型的性能,但游戏作为一个"既不复杂又挺复杂"的场景,或许能更全面地检验AI的实际应用能力。
游戏环境融合了文字、图像、视觉效果等多模态素材,要求AI不仅能理解静态信息,还要能分析动态变化。本文将通过对Gemini和Qwen两款AI模型在《重返未来:1999》和《王者荣耀》两款游戏中的表现测试,探讨当前AI推理能力的实际水平。
测试背景与方法论
测试模型简介
本次测试选取了两款近期更新的AI模型:
模型名称 | 版本 | 主要升级点 | 上下文窗口 |
---|---|---|---|
Gemini | 2.5 Pro Experimental | 推理、编码和多模态理解能力全面提升 | 100万token |
Qwen | QvQ-Max | 全新视觉推理模型,增强图像视频理解能力 | 未明确公布 |
Gemini 2.5 Pro Experimental于3月25日推出,在数学和科学基准测试(如GPQA和AIME 2025)中表现优异,超越了OpenAI的同类产品。它具备处理文本、音频、图像、视频甚至整个代码库的能力。
Qwen的QvQ-Max版本则在周五凌晨发布,专注于提升视觉推理能力,能够"看懂"图片和视频内容,并结合这些信息进行分析和推理。
测试游戏选择
我们选择了两款风格迥异的游戏进行测试:
-
《重返未来:1999》:一款相对简单的卡牌游戏,战斗场景清晰,数值显示完整,技能有文字说明,适合作为基础测试。
-
《王者荣耀》:一款复杂的MOBA游戏,战斗节奏快,信息量大,多角色同时交互,能更好检验AI处理复杂场景的能力。
测试流程设计
测试分为三个阶段:
- 数值提取测试:让AI观看游戏录像,整理出现的伤害数值,检验基础信息抓取能力。
- 技能分析测试:要求AI总结视频中出现的特殊技能及其效果。
- 策略建议测试:基于录像内容,让AI提供优化战斗策略的建议。
基础能力测试:《重返未来:1999》表现
数值提取对比
我们首先上传了B站UP主@司马玄清的《重返未来:1999》游戏录像给两个AI模型,要求它们整理所有出现的伤害数值。
处理速度对比:
指标 | Qwen | Gemini |
---|---|---|
上传时间 | 较快 | 2-3分钟 |
分析时间 | 较短 | 约30秒 |
输出结果差异:
特征 | Qwen | Gemini |
---|---|---|
思维链语言 | 中文 | 英文(较长) |
统计方法 | 每5秒采样一次 | 连续观看分析 |
多角色区分 | 一般 | 能区分攻击方和被攻击方 |
数字准确率 | ~55% | ~65% |
Qwen采用了定时采样的方式,每5秒记录一次画面显示的数值,这种方法在动态变化的游戏场景中准确度有限。而Gemini则尝试连续分析视频内容,对伤害数值的抓取更为连贯。
典型问题示例:
- 连击处理:两个模型对快速连击的抓取都不理想,Gemini只能记录第一次攻击的数值。
- 多段攻击合计:Gemini尝试计算多段攻击总和,但结果不准确。
- 模糊数值:当画面数值显示不清晰时,两个模型都有误判情况。
技能分析对比
在技能总结环节,两个模型展现了不同的分析思路:
Qwen:
- 主要依据卡面文字说明
- 按技能类型分类
- 描述较为笼统
Gemini:
- 结合视频中的实际使用场景
- 关联具体角色
- 包含使用频率统计
这种差异反映了两个模型不同的处理逻辑:Qwen更依赖明确的文字信息,而Gemini尝试从多模态数据中综合提取信息。
策略建议测试
基于前面的分析,我们让AI提供优化战斗策略的建议:
Qwen的建议:
- 详细但较为模板化
- 基于技能类型的常规组合
- 缺乏对具体战斗情境的针对性
Gemini的建议:
- 相对简洁
- 考虑了角色间的配合
- 包含资源分配建议
虽然都不是完美的游戏攻略,但已经展现出AI在理解游戏机制后提供有价值建议的潜力。
进阶挑战:《王者荣耀》测试
复杂场景下的表现
MOBA游戏的快节奏和多角色互动对AI提出了更高要求。测试中,我们上传了一段《王者荣耀》对战录像(人机模式),观察两个模型的表现。
数值提取结果对比:
问题类型 | Qwen | Gemini |
---|---|---|
基础数值抓取 | 错误较多 | 部分准确 |
时间戳记录 | 缺失 | 保留但不精确 |
多角色区分 | 困难 | 有一定区分能力 |
快速连招处理 | 几乎失效 | 记录部分数据 |
Gemini在备注中坦承:"对一些伤害难以区分",当多个数字同时出现时,它甚至用"较小数字"来概括。Qwen的输出则存在更多明显错误,且缺乏系统性的组织结构。
战局分析能力
我们进一步要求AI基于录像内容分析当前战局的胜率:
Qwen的分析:
- 综合了等级、金币等可见数据
- 提供相对平衡的胜率评估
- 缺乏深度推理过程
Gemini的亮点:
- 意外地分析了音频信息(识别出是人机对战)
- 得出"只要不出错就稳赢"的结论
- 展现了多模态信息融合能力
Gemini能够利用环境音频线索辅助判断,这一表现超出了预期,显示了其在信息综合方面的优势。
技术原理与瓶颈分析
多模态推理的核心价值
Qwen团队在QvQ-Max的发布报告中强调,传统AI主要依赖文字输入,但现实世界中大量信息通过图像、视频等形式存在。真正的智能需要:
- 感知能力:准确识别视觉元素(颜色、形状、位置关系等)
- 理解能力:把握元素间的关联和动态变化
- 推理能力:基于理解做出合理预测和建议
本次测试中表现出的差异,很大程度上反映了不同模型在这三个层次上的成熟度。
当前技术瓶颈
通过测试,我们可以总结出当前AI游戏助手的几个主要限制:
- 实时处理能力:对快节奏变化的跟踪不够灵敏
- 信息优先级判断:难以在信息过载时聚焦关键数据
- 跨模态关联:文字、视觉、音频信息的深度融合仍需加强
- 长期记忆与学习:无法基于多次观察优化游戏策略
性能差异原因分析
Gemini在测试中相对优势可能源于:
- 更大的上下文窗口(100万token)支持更连贯的分析
- 更成熟的推理架构能更好地关联多模态信息
- 训练数据的多样性提高了对复杂场景的适应能力
而Qwen作为专注视觉推理的模型,在图像解析的细节处理上可能有其独到之处,但在整体推理链条的完整性上还有提升空间。
未来展望与应用场景
游戏领域的潜在应用
尽管当前AI游戏助手还存在局限,但已经展现出多个有价值的应用方向:
- 新手教学:基于玩家实际表现提供个性化建议
- 战局复盘:自动分析对战录像,指出关键节点
- 策略优化:针对特定阵容推荐出装和技能组合
- 游戏测试:自动化检测游戏平衡性和bug
通用AI的发展路径
从游戏这个"微观世界"的测试中,我们可以看到通用人工智能(AGI)发展的几个关键要素:
- 多模态融合:打破感官模态间的壁垒
- 分层推理:从感知到决策的完整认知链条
- 实时适应:对动态环境的快速响应能力
- 可解释性:思维过程透明化以便人类监督
正如测试所展示的,当这些基础能力达到一定水平时,AI的泛用性将显著提升,"通用型智能"的雏形也将逐渐清晰。
结论:AI游戏助手的现状与未来
通过对Gemini和Qwen两款AI模型在游戏场景中的测试,我们可以得出以下结论:
- 当前AI已具备基础的游戏理解能力,能够从录像中提取关键信息并提供简单建议
- Gemini在多模态推理上表现更全面,尤其在信息关联和综合判断方面
- Qwen在视觉专注领域有其优势,但整体推理链条还需加强
- 复杂实时游戏仍是重大挑战,反映了AI在动态环境处理上的局限
- 推理能力是AGI的基石,其进步将全面提升AI在各领域的表现
随着技术的持续发展,AI游戏助手有望从简单的信息记录者进化为真正的智能教练,而这一进程也将推动通用人工智能的早日到来。对于游戏开发者和玩家而言,了解这些AI能力的现状和潜力,将有助于更好地把握未来的交互方式和技术趋势。
附录:测试数据详表
《重返未来:1999》数值抓取准确率抽样
时间点 | 实际数值 | Qwen记录 | Gemini记录 |
---|---|---|---|
0:15 | 235 | 240 | 235 |
1:03 | 187 | 未记录 | 187 |
2:30 | 312+156 | 312 | 312(未合计) |
3:45 | 278 | 290 | 278 |
4:20 | 403 | 未记录 | 400 |
《王者荣耀》关键指标识别率
指标类型 | Qwen识别率 | Gemini识别率 |
---|---|---|
英雄等级 | 60% | 85% |
装备价格 | 45% | 70% |
技能伤害 | 30% | 55% |
金币变化 | 50% | 80% |
击杀提示 | 40% | 90% |
注:识别率基于50个关键帧的人工核对结果
随着AI技术的持续进步,我们有理由相信,今天的这些局限将在不远的未来被逐一突破,最终实现真正智能化的游戏伴侣。对于AI研究者和开发者而言,游戏这个充满挑战的"试验场"将继续提供宝贵的反馈,推动通用人工智能向着更高水平发展。