前言
在学习了 第一章 - 初识数据和结构 之后,今天我们来学习一下算法!
在《数据结构》课程中,谈到算法,是为了帮助理解数据结构,并不会详细谈及算法。
基本概念
算法:是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。
算法的特性
算法的特性:输入、输出、有穷性、确定性和可行性
输入 | 输出 | 有穷性 | 确定性 | 可行性 |
---|---|---|---|---|
算法具有零个或多个 输入 | 算法至少有一个或多个 输出 | 指算法在执行有限的步骤 之后,自动结束而不会出现无限循环,并且每个步骤都在可接受的时间内完成 | 算法的每一步骤都具有确定的含意,无二义性 | 算法的每一步都必须是可行的,也就是每一步都能够通过执行有限次数完成 |
对于绝大多数算法来说,输入参数都是必要的,但对于个别情况,如打印 hello world 这样的代码,不需要任何输入参数,因此算法的输入可以是零个 | 算法是一定需要输出的,不需要输出,你用这个算法干嘛?输出的形式可以是打印输出,也可以是返回一个或多个值等 | 有穷 的概念并不是纯数学意义的,而是在实际应用当中合理的、可以接受的"有边界” | 算法在一定条件下,只有一条执行路径,相同的输入只能有唯一的输出结果。算法的每个步骤被精确定义而无歧义 | 可行性意味着算法可以转换为程序上机运行,并得到正确的结果 |
算法设计的要求
正确性 | 可读性 | 健壮性 | 时间效率高和存储量低 |
---|---|---|---|
指算法至少应该具有输入、输出和加工处理无歧义性、能正确反映问题的需求、能够得到问题的正确答案 | 算法设计的另一目的是为了便于阅读、理解和交流 | 当输入数据不合法时,算法能做出相关处理, 不是产生异常或莫名其妙的结果 | 设计算法应该尽量满足时间效率高和存储量低的需求 |
没有语法错误;对于合法的输入数据能够产生满足要求的输出结果;对于非法的输入数据能够得出满足规格说明的结果;对于精心选择的,甚至刁难的测试数据都有满足要求的输出结果 | 可读性高有助于人们理解算法,晦涩难懂的算法往往隐含错误,不易被发现且难于调试和修改 | 处理未期望的行为和错误终止;即使终止执行,也要准确/无歧义地向用户展示错误信息,错误信息有助于debug | 最好用最少的存储空间,花最少的时间,办成同样的事,就是好的算法 |
算法效率的度量方法
事后统计法 [ 代价大,受测环境因素影响大 ]- 事前分析估算方法 [ 在计算机程序编制前,依据统计方法对算法进行估算 ]
一个程序的运行时间,依赖算法的好坏和问题的输入规模。问题输入规模是指输入量的多少
函数的渐进增长
给定两个函数 f(n)和 g(n), 如果存在一个整数 N,使得对于所有的 n > N, f (n)总是比 g (n)大,那么,我们说 f(n)的增长渐近快于 g (n) 。
算法时间复杂度
定义:在进行算法分析时,语句总的执行次数
T(n)是关于问题规模n的函数
,分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级。
算法的时间复杂度,也就是算法的时间量度,记作: T(n) = O( f(n) )
。随时间规模增大,算法执行时间增长率和 f(n) 的增长率相同,T(n) 称作算法的渐近时间复杂度,简称为时间复杂度
。[ 其中 f(n) 是问题规模n的某个函数 ]
用大写 O( ) 来体现算法时间复杂度的记法,我们称之为大O记法。
推导大O阶方法
- 用常数1取代运行时间中的常数
- 再修改后的运行次数函数中,只保留最高阶项
- 如果最高项存在且不是1,则去除与这个项相乘的常数,得到的结果就是大O阶
//TEST 1 - 试计算该算法的大O阶
int sum =0.n =100; //执行一次
sum = (1+n)*n/2; //执行一次
printf("%d",sum); //执行一次
可以知道运行次数f(n)=3,按照大O阶方法,将常数项改为1,所以该算法的大O阶为O(1)
//TEST 2 - 试计算该算法的大O阶
int count = 1;
while(count < n)count=count*2;
设运行次数为=x
∵ 2^x=n
∴ x=log2n,f(n)=log2n,按照大O阶方法该算法的大O阶为O(logn)
//TEST 3 - 试计算该算法的大O阶
int i,j;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
print(count);
}
}
循环嵌套,内循环n次,外循环n次,总次数n*n=n^2,所以O(n)=n^2
//TEST 4 - 试计算该算法的时间复杂度
int i,j;
for(i=0;i<n;i++){
for(j=i;j<n;j++){
print(count);
}
}
当i=0时,内循环执行n次;
当i=1时,执行了n-1次...当i=n-1时,执行了1次。
所以总的执行次数=n+(n-1)+(n-2)+...+1=n(n+1)/2
保留最高项,将最高项常数变1.所以是时间复杂度=O(n^2)
常见的时间复杂度
执行次数函数 | 阶 | 非正式术语 |
---|---|---|
12 | O(1) | 常数阶 |
2n+3 | O(n) | 线性阶 |
3n2+2n+3 | O(n2) | 平方阶 |
5log2n+20 | O(logn) | 对数阶 |
3nlog2n+19 | O(nlogn) | nlogn阶 |
6n3+2n2+3n+4 | O(n3) | 立方阶 |
2n | O(2n) | 指数阶 |
常见的时间复杂度所耗时大小排列:O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)
最后
以上内容为 大话数据结构 – 程杰 第二章算法的学习笔记。
虽然和成为Java工程师有一段距离,但是没关系,我是一个一旦确立目标就很有干劲的人,一定会成功!
如果有跟我一起学习的同学可以帮我指正那就更好了,欢迎加入我的交流群 916352394。