大话数据结构2 - 初识算法


前言

在学习了 第一章 - 初识数据和结构 之后,今天我们来学习一下算法!
在《数据结构》课程中,谈到算法,是为了帮助理解数据结构,并不会详细谈及算法。


基本概念

算法:是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。

算法的特性

算法的特性:输入、输出、有穷性、确定性和可行性

输入输出有穷性确定性可行性
算法具有零个或多个输入算法至少一个或多个输出指算法在执行有限的步骤之后,自动结束而不会出现无限循环,并且每个步骤都在可接受的时间内完成算法的每一步骤都具有确定的含意,无二义性算法的每一步都必须是可行的,也就是每一步都能够通过执行有限次数完成
对于绝大多数算法来说,输入参数都是必要的,但对于个别情况,如打印 hello world 这样的代码,不需要任何输入参数,因此算法的输入可以是零个算法是一定需要输出的,不需要输出,你用这个算法干嘛?输出的形式可以是打印输出,也可以是返回一个或多个值等有穷的概念并不是纯数学意义的,而是在实际应用当中合理的、可以接受的"有边界”算法在一定条件下,只有一条执行路径,相同的输入只能有唯一的输出结果。算法的每个步骤被精确定义而无歧义可行性意味着算法可以转换为程序上机运行,并得到正确的结果

算法设计的要求

正确性可读性健壮性时间效率高和存储量低
指算法至少应该具有输入、输出和加工处理无歧义性、能正确反映问题的需求、能够得到问题的正确答案算法设计的另一目的是为了便于阅读、理解和交流当输入数据不合法时,算法能做出相关处理, 不是产生异常或莫名其妙的结果设计算法应该尽量满足时间效率高和存储量低的需求
没有语法错误;对于合法的输入数据能够产生满足要求的输出结果;对于非法的输入数据能够得出满足规格说明的结果;对于精心选择的,甚至刁难的测试数据都有满足要求的输出结果可读性高有助于人们理解算法,晦涩难懂的算法往往隐含错误,不易被发现且难于调试和修改处理未期望的行为和错误终止;即使终止执行,也要准确/无歧义地向用户展示错误信息,错误信息有助于debug最好用最少的存储空间,花最少的时间,办成同样的事,就是好的算法

算法效率的度量方法

  1. 事后统计法 [ 代价大,受测环境因素影响大 ]
  2. 事前分析估算方法 [ 在计算机程序编制前,依据统计方法对算法进行估算 ]

一个程序的运行时间,依赖算法的好坏和问题的输入规模。问题输入规模是指输入量的多少


函数的渐进增长

给定两个函数 f(n)和 g(n), 如果存在一个整数 N,使得对于所有的 n > N, f (n)总是比 g (n)大,那么,我们说 f(n)的增长渐近快于 g (n) 。


算法时间复杂度

定义:在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,分析 T(n) 随 n 的变化情况并确定 T(n) 的数量级。
算法的时间复杂度,也就是算法的时间量度,记作: T(n) = O( f(n) )。随时间规模增大,算法执行时间增长率和 f(n) 的增长率相同,T(n) 称作算法的渐近时间复杂度,简称为时间复杂度。[ 其中 f(n) 是问题规模n的某个函数 ]

用大写 O( ) 来体现算法时间复杂度的记法,我们称之为大O记法。

推导大O阶方法

  1. 用常数1取代运行时间中的常数
  2. 再修改后的运行次数函数中,只保留最高阶项
  3. 如果最高项存在且不是1,则去除与这个项相乘的常数,得到的结果就是大O阶
//TEST 1 - 试计算该算法的大O阶

int sum =0.n =100;	//执行一次
sum = (1+n)*n/2;	//执行一次
printf("%d",sum);	//执行一次

可以知道运行次数f(n)=3,按照大O阶方法,将常数项改为1,所以该算法的大O阶为O(1
//TEST 2 - 试计算该算法的大O阶

int count = 1;		
while(count < n)count=count*2;

设运行次数为=x 
 ∵ 2^x=n 
 ∴ x=log2n,f(n)=log2n,按照大O阶方法该算法的大O阶为O(logn)
//TEST 3 - 试计算该算法的大O阶

int i,j;
for(i=0;i<n;i++){
	for(j=0;j<n;j++){
		print(count);
	}
}

循环嵌套,内循环n次,外循环n次,总次数n*n=n^2,所以O(n)=n^2
//TEST 4 - 试计算该算法的时间复杂度

int i,j;
for(i=0;i<n;i++){
	for(j=i;j<n;j++){
		print(count);
	}
}

当i=0时,内循环执行n次;
当i=1时,执行了n-1...当i=n-1时,执行了1次。
所以总的执行次数=n+(n-1)+(n-2)+...+1=n(n+1)/2
保留最高项,将最高项常数变1.所以是时间复杂度=O(n^2)

常见的时间复杂度

执行次数函数非正式术语
12O(1)常数阶
2n+3O(n)线性阶
3n2+2n+3O(n2)平方阶
5log2n+20O(logn)对数阶
3nlog2n+19O(nlogn)nlogn阶
6n3+2n2+3n+4O(n3)立方阶
2nO(2n)指数阶

常见的时间复杂度所耗时大小排列:O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)


最后

以上内容为 大话数据结构 – 程杰 第二章算法的学习笔记。
虽然和成为Java工程师有一段距离,但是没关系,我是一个一旦确立目标就很有干劲的人,一定会成功!
如果有跟我一起学习的同学可以帮我指正那就更好了,欢迎加入我的交流群 916352394

冲鸭!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高冷的上官梓芸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值