传感器深度学习融合论文精读
文章平均质量分 91
深部不学习解决信息不融合
深度不学习V
这个作者很懒,什么都没留下…
展开
-
Sensor Fusion 论文精读系列(三)
Sensor Fusion 论文精读系列(三) 《PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud》 1 简介 《PointRcnn》发表于2019 arXiv,作者时小帅,香港中文大学。 2 摘要 在本文中,提出了来自原始点云的三维对象检测的PointRCNN。整个框架由两个阶段组成:第一阶段为自下向上的三维提案生成和第二阶段为细化规范坐标下的策略,以获得最终的检测结果。我们的第一阶段子网络没有像以前的方法那样原创 2021-08-07 21:14:26 · 274 阅读 · 0 评论 -
Sensor Fusion 论文精读系列(二)
Sensor Fusion 论文精读系列(二) 《Multi-View Adaptive Fusion Network for 3D Object Detection》 1 简介 《三维对象检测的多视图自适应融合网络》这篇文章2020年发表于arXiv,作者王国军,吉林大学博士 2 摘要 提出了一个单级多视图融合框架,它以激光雷达鸟瞰视图、激光雷达工作范围视图和相机视图图像作为三维物体检测的输入。我们提出了一个注意点态融合(APF)模块来估计三个注意机制的重要性,可以以点态方式实现多视图特征的自适应融合。原创 2021-07-02 19:53:58 · 827 阅读 · 4 评论 -
Sensor Fusion 论文精读系列(一)
Sensor Fusion 论文精读系列(一) 《A General Pipeline for 3D Detection of Vehicles》 1.简介 《一种车辆3D检测的通用途径》这篇文章于2018年发表于arXiv,作者为杜欣欣,新加坡国立大学。 2.摘要 提出了一种途径:在二维检测网络变化最小的情况下生成三维信息,为了识别三维框,开发一种基于广义汽车模型的分数图有效模型拟合算法。 提出一种两阶段的CNN来改进检测到的三维框。 3.引言 本文提出的框架如图所示 原始图像通过二维检测网络确原创 2021-06-26 23:19:46 · 434 阅读 · 4 评论