力扣 1.14 剑指offer 第九天

51 篇文章 0 订阅

剑指 Offer 42. 连续子数组的最大和

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
class Solution {
    public int maxSubArray(int[] nums) {
        int result=nums[0];
        if(nums.length==0){
            return 0;
        }
        int temp=nums[0];
        for(int i=1;i<nums.length;i++){
            temp=Math.max(temp+nums[i],nums[i]);//某个点加入前一个点的序列,或者不加入
            result=Math.max(temp,result);
        }
        return result;
    }
}

剑指 Offer 47. 礼物的最大价值

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

class Solution {
    public int maxValue(int[][] grid) {
        int result=0;
        int F[][]=new int[grid.length][grid[0].length];
        int l=grid.length;
        int n=grid[0].length;
        if(l==0 || n==0){
            return 0;
        }
        F[0][0]=grid[0][0];
        for(int i=1;i<n;i++){
            F[0][i] =F[0][i-1]+grid[0][i];
        }
        for(int i=1 ; i<l ; i++){
            for(int j = 0 ; j < n ; j++){
                if(j>0){
                    F[i][j]=Math.max(F[i-1][j]+grid[i][j] , F[i][j-1]+grid[i][j]);
                }
                else{
                    F[i][j]=F[i-1][j]+grid[i][j];
                }
            }
        } 
        return F[l-1][n-1];
    }
}

重点还是在于状态转移方程的推理和某些特殊条件的处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值