剑指 Offer 42. 连续子数组的最大和
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
class Solution {
public int maxSubArray(int[] nums) {
int result=nums[0];
if(nums.length==0){
return 0;
}
int temp=nums[0];
for(int i=1;i<nums.length;i++){
temp=Math.max(temp+nums[i],nums[i]);//某个点加入前一个点的序列,或者不加入
result=Math.max(temp,result);
}
return result;
}
}
剑指 Offer 47. 礼物的最大价值
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
class Solution {
public int maxValue(int[][] grid) {
int result=0;
int F[][]=new int[grid.length][grid[0].length];
int l=grid.length;
int n=grid[0].length;
if(l==0 || n==0){
return 0;
}
F[0][0]=grid[0][0];
for(int i=1;i<n;i++){
F[0][i] =F[0][i-1]+grid[0][i];
}
for(int i=1 ; i<l ; i++){
for(int j = 0 ; j < n ; j++){
if(j>0){
F[i][j]=Math.max(F[i-1][j]+grid[i][j] , F[i][j-1]+grid[i][j]);
}
else{
F[i][j]=F[i-1][j]+grid[i][j];
}
}
}
return F[l-1][n-1];
}
}