给你一个整数
n
,返回 和为n
的完全平方数的最少数量 。完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,
1
、4
、9
和16
都是完全平方数,而3
和11
不是。示例 1:
输入:n = 12 输出:3 解释:12 = 4 + 4 + 4示例 2:
输入:n = 13 输出:2 解释:13 = 4 + 9提示:
1 <= n <= 104
思路:
/**
* @program: Test
* @description:
* @author: xf
* @create: 2024-12-23 13:51
**/
public class Test {
public static void main(String[] args) {
System.out.println(numSquares(12));
}
/**
* 动态规划方法
*
* @param n
* @return
*/
// 时间复杂度O(n√n) 外循环n 内循环√n
// 空间复杂度O(n)
public static int numSquares(int n) {
// 初始化 dp 数组, dp[i] 表示和为 i 的最少完全平方数的数量
int[] dp = new int[n + 1];
// dp 数组初始化为最大值(无穷大),表示未计算的状态
for (int i = 1; i <= n; i++) {
dp[i] = Integer.MAX_VALUE;
}
// 和为 0 时需要 0 个完全平方数
dp[0] = 0;
// 遍历 1 到 n,依次计算 dp[i]
for (int i = 1; i <= n; i++) {
for (int j = 1; j * j <= i; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j]+1);
}
}
return dp[n];
}
}