297.完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12

输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13

输出:2
解释:13 = 4 + 9
 

提示:

  • 1 <= n <= 104

 思路:

 

/**
 * @program: Test
 * @description:
 * @author: xf
 * @create: 2024-12-23 13:51
 **/
public class Test {
    public static void main(String[] args) {
        System.out.println(numSquares(12));
    }

    /**
     * 动态规划方法
     *
     * @param n
     * @return
     */
    // 时间复杂度O(n√n) 外循环n 内循环√n
    // 空间复杂度O(n)
    public static int numSquares(int n) {
        // 初始化 dp 数组, dp[i] 表示和为 i 的最少完全平方数的数量
        int[] dp = new int[n + 1];
        // dp 数组初始化为最大值(无穷大),表示未计算的状态
        for (int i = 1; i <= n; i++) {
            dp[i] = Integer.MAX_VALUE;
        }
        // 和为 0 时需要 0 个完全平方数
        dp[0] = 0;
        // 遍历 1 到 n,依次计算 dp[i]
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j * j <= i; j++) {
                dp[i] = Math.min(dp[i], dp[i - j * j]+1);
            }
        }
        return dp[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XF鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值