八、LeetCode第八题(3)
无重复字符的最长字串
给定一个字符串 s
,请你找出其中不含有重复字符的 最长子串的长度。
遇见字符串的题目,前边都是数组题,一时间不知道怎么做,看了一下评论区解析,发现好像是一样的,还是用指针查找嘛:
class Solution {
public:
int lengthOfLongestSubstring(string s) {
int start = 0, end = 0;
int ans = 0, len = 0;
int n = s.size();
for(end; end<n; end++){
for(int i = start; i<end; i++){
if(s[i] == s[end]){
start = i+1;
len = end-start;
break;
}
}
len++;
ans = max(ans, len);
}
return ans;
}
};
提交之后发现居然是运行时间最短的那一档!
这个方法叫做滑动窗口,应该很好理解,最重要的是确定窗口的起始位置,避免重复操作。计算长度就是窗口两个指针间的长度。
九、LeetCode第九题(438)
找到字符串中所有字母异位词
给定两个字符串 s
和 p
,找到 s
中所有 p
的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。
又是一道滑动窗口题,但是我觉得更复杂一点了,翻题解的时候看到力扣上一个大佬总结了算法框架,我直接开始背诵并默写。
作者:labuladong
链接:https://leetcode.cn/problems/find-all-anagrams-in-a-string/solutions/9749/hua-dong-chuang-kou-tong-yong-si-xiang-jie-jue-zi-/
来源:力扣(LeetCode)
/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
...
/*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/
// 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}
于是我把他给出的几个例子分析都仔细看了一遍,终于是有点眉目了。
力扣第76题最小覆盖字串,难易程度为困难,仔细看了讲解然后自己写了两遍,总结一下几个核心点:
- 大框架仍然是左右指针的滑动,开始循环语句一般是while(right < s.size()),右指针滑动,扩大窗口的过程;
- right指针移动停止后,考虑分析left指针的移动,即窗口缩小过程;
- 其中比较难以考虑的细节是,第一、用到哈希表来存储字符以及字符的个数;第二、确保所需要覆盖的字符串都包含进去需要有一个有效判断(计数功能)valid,当覆盖字符个数满足时valid加一;第三、找到最小的覆盖长度或是起始点或是子串,这也是题目最终需要解答出来的结果,最小覆盖长度就是最终最小滑动窗口的长度len,同时记当前的left指针为start,子串就可以表示为s.substr(start, len)。其中需要注意的是初始化len,因为要求最短,所以初始化时最长,即 len=INT_MAX。
上面第八题(3)提到的题目之所以简单是因为不需要考虑窗口的缩小,直接找最大长度就好了。
同类型的第567题,字符串排列在第76题的基础上做一点小改动就可以。(自己写出来了)
最后看这个438题,我用了与前面两个完全一致的思路自己写出来了
class Solution {
public:
vector<int> findAnagrams(string s, string p) {
//滑动窗口和哈希表
unordered_map<char, int>window, need;
for(char i:p) need[i]++;
int left = 0, right = 0, valid = 0;
vector<int> ans;
while(right < s.size()){
char a = s[right];
right++;
if(need.count(a)){
window[a]++;
if(window[a] == need[a]){
valid++;
}
}
while(valid == need.size()){
if(right-left == p.size()){
ans.push_back(left);
}
char d = s[left];
left++;
if(need.count(d)){
if(window[d] == need[d]) valid--;
window[d]--;
}
}
}
return ans;
}
};
三道题基本都是这一个模式。举一反三的感觉也太棒了吧,感觉只要类似的题目基本都有思路了。不同的题目只要在细节上面想清楚就好了,大框架是一致的,灵活运用。虽然不是最佳方法,但是基本有通用的思路,感觉这样按类别来思考更有效。