# 深圳宝安教师招聘面试感悟 1、关于面试时间千万不要相信面试时间,发短信说地是上午八点到中午十二点,结果等到下午三点办我打电话之后才等到进入会议地短息,进入之后又是漫长地等待,等了四十分钟才进入面试,面试果不其然是三分钟2、面试内容面试1、自我介绍,2、宝安数学教师招聘地一个自我评价?没太明白这个问题3、你有多高,站起来全身照5、如何看待能和学生达成一篇又有老师威严地(估计是我答地太啰嗦了直接打断了)。以上就是关于这次面试地全部。嗯,估计是面多了,对不好的结局也不做勉强了。...
SQL39 筛选昵称规则和试卷规则的作答记录 SQL39 筛选昵称规则和试卷规则的作答记录描述现有用户信息表user_info(uid用户ID,nick_name昵称, achievement成就值, level等级, job职业方向, register_time注册时间):试卷信息表examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间):试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, st
SQL35 每月及截止当月的答题情况 SQL35 每月及截止当月的答题情况描述现有试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分):请输出自从有用户作答记录以来,每月的试卷作答记录中月活用户数、新增用户数、截止当月的单月最大新增用户数、截止当月的累积用户数。结果按月份升序输出。分析1、题目并不是很难,所有的函数其实都已经知道,但是就是没有想到那一层上面,2、一层先选出所有的字段、月份、最小的月份3、二层 选出月
SQL中计算字符串的长度函数 SQL中计算字符长度的函数有1、len(str) mysql中并不支持这个函数2、char_length(str) 计算的是字符串中个数的问题,例如char_length('a好的')--输出的是33、length(str) 计算的是字符串的长度char_length('a好的')--输出 54、连接两个字符串函数 concat...
SQL33 对试卷得分做min-max归一化 SQL33 对试卷得分做min-max归一化现有试卷信息表examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间):试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分):在物理学及统计学数据计算时,有个概念叫min-max标准化,也被称为离差标准化,是对原始数据的线性变
SQL29 连续两次作答试卷的最大时间窗 SQL29 连续两次作答试卷的最大时间窗1、函数lead (str1,number) over(partition by str2 order by str3)题目现有试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分):请计算在2021年至少有两天作答过试卷的人中,计算该年连续两次作答试卷的最大时间窗days_window,那么根据该年的历史规律他在days_window天里平
牛客网刷题SQL27 每类试卷得分前3名 SQL27 每类试卷得分前3名题目现有试卷信息表examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间):试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分):找到每类试卷得分的前3名,如果两人最大分数相同,选择最小分数大者,如果还相同,选择uid大者。select
SQL19 未完成试卷数大于1的有效用户 SQL19 未完成试卷数大于1的有效用户题目现有试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分),示例数据如下:还有一张试卷信息表examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间),示例数据如下select a.uid ,count(a.s
牛客网刷题笔记 SQL17 平均活跃天数和月活人数用户在牛客试卷作答区作答记录存储在表exam_record中,内容如下:exam_record表(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分)select month ,round(sum(cnt)/count(uid),2) ,count(uid)from(select month ,uid ,count(di
SQL中的增删改查 SQL中的增删改查1、增2、删删除某条记录delete from user_infowhere timestampdiff(hour,start_time,submit_time)<1order by scorelimit 3;删除表中的内容truncate table user_info;删除某列(其实可以归为改那一类)alter table user_info drop column id;3、改--在某一列后面增加一列alter table user_info
sql匹配 SQL模糊匹配字符匹配 1、_ :匹配一个字符 例如:查找姓张且名字为三个字的学生信息select * from student where name like '张__'2、%:匹配0个或多个字符串 例如:查找姓张的学生的信息select * from student where name like '张%3、[]匹配框中的任意一个字符 例如查找姓李、张、宋的学生信息select * from student where name like '[张李宋]%'4、不匹配[]中的字符 例如
sql中count(*),count(1)和count(字段名)的区别 sql中count(*),count(1)和count(字段名)的区别1、count(1)和count(*)的区别不大都是不忽略空值,计算整个表格的行数2、count(字段名)计算的是字段所在列中非缺失值的数量
2021-10-02 模考总结2021、10、2第一次模考成绩60,排名1665/3554,2865/6371第一次参加模考,行测130题,120分钟,做题总结如下1、做题速度太慢,导致数量关系,资料分析题根本做不完2、做题的难度有待提高,从这次测验来看,很多的题目计算量都很大,特别是资料分析,跟之前做的完全是两个等级,之前做的选调只能说是基础类型的题目,现在看来,要加大难度了。各模块总结正确率1、判断推理:0.72、常识判断:0.453、言语理解与表达:0.74、数量关系:0。65、资料分析:0.3
EXCEL小技巧 每天一个Excel小技巧,强大的excel20210928使用excel实现阶梯计算分档范围执行价格一0-2600.5二261-5000.6三501以上0.8计算函数=sum(text(B2-{0,260,500},“0;!0”)*{0.5,0.1,0.2})如当数字为400的好时候,计算的是400-0,400-260,400-500,当出现负数的时候后面的参数"0;!0"会将之转换为0,进行计算!后面一大括号中的数据是阶梯之间的差额!.
sql函数知识点 sql函数1、internal view explore(a) 将a列爆炸2、nvl(a,’ ')如果为空值则返回空,避免输出的时候出错3、cast( a as int) 改变数据的类型 这里是改为整数型变量4、concate(a,b)将a,b整合在一起5、count(*) over(partition by a order by m)6、row_number() over(partition by a)...
统计学习方法总结 第一章数据挖掘方法概述#mermaid-svg-O4limIwZqenIz35k .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-O4limIwZqenIz35k .label text{fill:#333}#mermaid-svg-O4limIwZqenIz35k .node rect,#mermaid-sv
python知识点 每天一个python知识点1 将变量转换为分类变量import numpy as npimport pandas as pdunique_class=list(["a","b","c","c"])unique_class=unique_class.unique().tolist()#将列表中的元素变为唯一变量data1 = {"one":pd.Series(["a","b","c","a","c"]), "two":pd.Series(np.random.rand(4))