十三、数据倾斜

        公司一:总用户量1000万,5台64G内存的服务器。

        公司二:总用户量10亿,1000台64G内存的服务器。

        1.公司一的数据分析师在做join的时候发生了数据倾斜,会导致有几百万用户的相关数据集中到了一台服务器上,几百万的用户数据,说大也不大,正常字段量的数据的话64G还是能轻松处理掉的。

        2.公司二的数据分析师在做join的时候也发生了数据倾斜,可能会有1个亿的用户相关数据集中到了一台机器上了(相信我,这很常见)。这时候一台机器就很难搞定了,最后会很难算出结果。

1 数据倾斜表现

        1)hadoop中的数据倾斜表现:

                有一个多几个Reduce卡住,卡在99.99%,一直不能结束。

                各种container报错OOM

                异常的Reducer读写的数据量极大,至少远远超过其它正常的Reducer  

                伴随着数据倾斜,会出现任务被kill等各种诡异的表现。

        2)hive中数据倾斜

                一般都发生在Sql中group by和join on上,而且和数据逻辑绑定比较深。

        3)Spark中的数据倾斜

                Spark中的数据倾斜,包括Spark Streaming和Spark Sql,表现主要有下面几种:       

                        Executor lost,OOM,Shuffle过程出错;

                        Driver OOM;

                        单个Executor执行时间特别久,整体任务卡在某个阶段不能结束;

                        正常运行的任务突然失败;

2 数据倾斜产生原因

        我们以Spark和Hive的使用场景为例。

        他们在做数据运算的时候会涉及到,count distinctgroup byjoin on等操作,这些都会触发Shuffle动作。一旦触发Shuffle,所有相同key的值就会被拉到一个或几个Reducer节点上,容易发生单点计算问题,导致数据倾斜。

        一般来说,数据倾斜原因有以下几方面:

        1)key分布不均匀;

        2)建表时考虑不周

        我们举一个例子,就说数据默认值的设计吧,假设我们有两张表:

        user(用户信息表):userid,register_ip

        ip(IP表):ip,register_user_cnt

       这可能是两个不同的人开发的数据表。如果我们的数据规范不太完善的话,会出现一种情况:

user表中的register_ip字段,如果获取不到这个信息,我们默认为null;

        但是在ip表中,我们在统计这个值的时候,为了方便,我们把获取不到ip的用户,统一认为他们的ip为0。

        两边其实都没有错的,但是一旦我们做关联了,这个任务会在做关联的阶段,也就是sql的on的阶段卡死。

        3)业务数据激增

        比如订单场景,我们在某一天在北京和上海两个城市多了强力的推广,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。

        然后我们要统计不同城市的订单情况,这样,一做group操作,可能直接就数据倾斜了。

3 解决数据倾斜思路

        很多数据倾斜的问题,都可以用和平台无关的方式解决,比如更好的数据预处理异常值的过滤等。因此,解决数据倾斜的重点在于对数据设计和业务的理解,这两个搞清楚了,数据倾斜就解决了大部分了。

        1)业务逻辑

                我们从业务逻辑的层面上来优化数据倾斜,比如上面的两个城市做推广活动导致那两个城市数据量激增的例子,我们可以单独对这两个城市来做count,单独做时可用两次MR,第一次打散计算,第二次再最终聚合计算。完成后和其它城市做整合。

        2)程序层面

        比如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有一个Reduce任务。

        我们可以先group by,再在外面包一层count,就可以了。比如计算按用户名去重后的总用户量:

        (1)优化前 只有一个reduce,先去重再count负担比较大:

        select name,count(distinct name)from user;

        (2)优化后

        // 设置该任务的每个job的reducer个数为3个。Hive默认-1,自动推断。

        set mapred.reduce.tasks=3;

        // 启动两个job,一个负责子查询(可以有多个reduce),另一个负责count(1):

        select count(1) from (select name from user group by name) tmp;

        3)调参方面

                Hadoop和Spark都自带了很多的参数和机制来调节数据倾斜,合理利用它们就能解决大部分问题。

        4)从业务和数据上解决数据倾斜

                很多数据倾斜都是在数据的使用上造成的。我们举几个场景,并分别给出它们的解决方案。

                有损的方法:找到异常数据,比如ip为0的数据,过滤掉

                无损的方法:对分布不均匀的数据,单独计算        

                先对key做一层hash,先将数据随机打散让它的并行度变大,再汇集

                数据预处理

4 定位导致数据倾斜代码

        Spark数据倾斜只会发生在shuffle过程中。

        这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinctgroupByKeyreduceByKeyaggregateByKeyjoincogrouprepartition等。

        出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。

4.1 某个task执行特别慢的情况

        首先要看的,就是数据倾斜发生在第几个stage中:

        如果是用yarn-client模式提交,那么在提交的机器本地是直接可以看到log,可以在log中找到当前运行到了第几个stage;

        如果是用yarn-cluster模式提交,则可以通过Spark Web UI来查看当前运行到了第几个stage。

        此外,无论是使用yarn-client模式还是yarn-cluster模式,我们都可以在Spark Web UI上深入看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜。

        看task运行时间和数据量

        task运行时间

        比如下图中,倒数第三列显示了每个task的运行时间。明显可以看到,有的task运行特别快,只需要几秒钟就可以运行完;而有的task运行特别慢,需要几分钟才能运行完,此时单从运行时间上看就已经能够确定发生数据倾斜了。

        task数据量

        此外,倒数第一列显示了每个task处理的数据量,明显可以看到,运行时间特别短的task只需要处理几百KB的数据即可,而运行时间特别长的task需要处理几千KB的数据,处理的数据量差了10倍。此时更加能够确定是发生了数据倾斜。

        推断倾斜代码

        知道数据倾斜发生在哪一个stage之后,接着我们就需要根据stage划分原理,推算出来发生倾斜的那个stage对应代码中的哪一部分,这部分代码中肯定会有一个shuffle类算子。

        精准推算stage与代码的对应关系,需要对Spark的源码有深入的理解,这里我们可以介绍一个相对简单实用的推算方法:只要看到Spark代码中出现了一个shuffle类算子或者是Spark SQL的SQL语句中出现了会导致shuffle的语句(比如group by语句),那么就可以判定,以那个地方为界限划分出了前后两个stage。

        这里我们就以如下单词计数来举例。

        val conf = new SparkConf()val sc = new SparkContext(conf)val lines = sc.textFile("hdfs://...")val words = lines.flatMap(_.split(" "))val pairs = words.map((_, 1))val wordCounts = pairs.reduceByKey(_ + _)wordCounts.collect().foreach(println(_))

        在整个代码中只有一个reduceByKey是会发生shuffle的算子,也就是说这个算子为界限划分出了前后两个stage:

        stage0,主要是执行从textFilemap操作,以及shuffle write操作(对pairs RDD中的数据进行分区操作,每个task处理的数据中,相同的key会写入同一个磁盘文件内)。

        stage1,主要是执行从reduceByKeycollect操作,以及stage1的各个task一开始运行,就会首先执行shuffle read操作(会从stage0的各个task所在节点拉取属于自己处理的那些key,然后对同一个key进行全局性的聚合或join等操作,在这里就是对key的value值进行累加)

        stage1在执行完reduceByKey算子之后,就计算出了最终的wordCounts RDD,然后会执行collect算子,将所有数据拉取到Driver上,供我们遍历和打印输出。

        123456789

        通过对单词计数程序的分析,希望能够让大家了解最基本的stage划分的原理,以及stage划分后shuffle操作是如何在两个stage的边界处执行的。然后我们就知道如何快速定位出发生数据倾斜的stage对应代码的哪一个部分了。

        比如我们在Spark Web UI或者本地log中发现,stage1的某几个task执行得特别慢,判定stage1出现了数据倾斜,那么就可以回到代码中,定位出stage1主要包括了reduceByKey这个shuffle类算子,此时基本就可以确定是是该算子导致了数据倾斜问题。

        此时,如果某个单词出现了100万次,其他单词才出现10次,那么stage1的某个task就要处理100万数据,整个stage的速度就会被这个task拖慢。

4.2 某个task莫名其妙内存溢出的情况

        这种情况下去定位出问题的代码就比较容易了。我们建议直接看yarn-client模式下本地log的异常栈,或者是通过YARN查看yarn-cluster模式下的log中的异常栈。一般来说,通过异常栈信息就可以定位到你的代码中哪一行发生了内存溢出。然后在那行代码附近找找,一般也会有shuffle类算子,此时很可能就是这个算子导致了数据倾斜。

        但是大家要注意的是,不能单纯靠偶然的内存溢出就判定发生了数据倾斜。因为自己编写的代码的bug,以及偶然出现的数据异常,也可能会导致内存溢出。因此还是要按照上面所讲的方法,通过Spark Web UI查看报错的那个stage的各个task的运行时间以及分配的数据量,才能确定是否是由于数据倾斜才导致了这次内存溢出。

5 查看导致数据倾斜的key分布情况

        先对pairs采样10%的样本数据,然后使用countByKey算子统计出每个key出现的次数,最后在客户端遍历和打印样本数据中各个key的出现次数。

        val sampledPairs = pairs.sample(false, 0.1)

        val sampledWordCounts = sampledPairs.countByKey()

        sampledWordCounts.foreach(println(_))

6 Spark 数据倾斜的解决方案

        6.1 使用Hive ETL预处理数据

                6.1.1 适用场景

                        导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

                6.1.2 实现思路

                        此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

                6.1.3 方案实现原理

                        这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。

                6.1.4 方案优缺点

                        优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。

                        缺点:治标不治本,Hive ETL中还是会发生数据倾斜。

                6.1.5 方案实践经验

                        在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

                6.1.6 项目实践经验

                        在美团·点评的交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上。

      6.2 过滤少数导致倾斜的key

                6.2.1 方案适用场景

                        如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

                6.2.2 方案实现思路

                        如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。

                        比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。

                        如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。

                6.2.3 方案实现原理

                        将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

                6.2.4 方案优缺点

                        优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。

                        缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。

                6.2.5 方案实践经验

                        在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

        6.3 提高shuffle操作的并行度

                6.3.1 方案适用场景

                        如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。

                6.3.2 方案实现思路

                    在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就 设置了这个shuffle算子执行时shuffle read task的数量,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,默认是200,对于很多场景来说都有点过小。

                6.3.3 方案实现原理

                        增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。

                        而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。具体原理如下图所示。

                 6.3.4 方案优缺点

                        优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。

                        缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。

                6.3.5 方案实践经验

                        该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。

        6.4 两阶段聚合(局部聚合+全局聚合)

                  6.4.1 方案适用场景

                        对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

                6.4.2 方案实现思路

                        这个方案的核心实现思路就是进行两阶段聚合:

                        第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。

                        接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。

                        然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

                        示例代码如下:

                        // 第一步,给RDD中的每个key都打上一个随机前缀。

                        JavaPairRDD<String, Long> randomPrefixRdd = rdd.mapToPair(
                                new PairFunction<Tuple2<Long,Long>, String, Long>() {
                                    private static final long serialVersionUID = 1L;
                                    @Override
                                    public Tuple2<String, Long> call(Tuple2<Long, Long> tuple)
                                            throws Exception {
                                        Random random = new Random();
                                        int prefix = random.nextInt(10);
                                        return new Tuple2<String, Long>(prefix + "_" + tuple._1, tuple._2);
                                    }
                                });

                        // 第二步,对打上随机前缀的key进行局部聚合。
                        JavaPairRDD<String, Long> localAggrRdd = randomPrefixRdd.reduceByKey(
                                new Function2<Long, Long, Long>() {
                                    private static final long serialVersionUID = 1L;
                                    @Override
                                    public Long call(Long v1, Long v2) throws Exception {
                                        return v1 + v2;
                                    }
                                });

                        // 第三步,去除RDD中每个key的随机前缀。
                     JavaPairRDD<Long, Long> removedRandomPrefixRdd = localAggrRdd.mapToPair(
        new PairFunction<Tuple2<String,Long>, Long, Long>() {
                            private static final long serialVersionUID = 1L;
                            @Override
                            public Tuple2<Long, Long> call(Tuple2<String, Long> tuple)
                                    throws Exception {
                                long originalKey = Long.valueOf(tuple._1.split("_")[1]);
                                return new Tuple2<Long, Long>(originalKey, tuple._2);
                            }
                        });

                        // 第四步,对去除了随机前缀的RDD进行全局聚合。
               JavaPairRDD<Long, Long> globalAggrRdd = removedRandomPrefixRdd.reduceByKey(
        new Function2<Long, Long, Long>() {
                    private static final long serialVersionUID = 1L;
                    @Override
                    public Long call(Long v1, Long v2) throws Exception {
                        return v1 + v2;
                    }
                });

                6.4.3 方案实现原理

                        将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。

                 6.4.4 方案优缺点

                        优点
                对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

                        缺点
                仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

        6.5 将reduce join转为map join

                  6.5.1 方案适用场景

                        在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

                6.5.2 方案实现思路

                        不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量,广播给其他Executor节点;

                        接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。

                        示例如下:

                        // 首先将数据量比较小的RDD的数据,collect到Driver中来。
                List<Tuple2<Long, Row>> rdd1Data = rdd1.collect()
                       // 然后使用Spark的广播功能,将小RDD的数据转换成广播变量,这样每个Executor就只有一份RDD的数据。
                        // 可以尽可能节省内存空间,并且减少网络传输性能开销。

         final Broadcast<List<Tuple2<Long, Row>>> rdd1DataBroadcast = sc.broadcast(rdd1Data);

        // 对另外一个RDD执行map类操作,而不再是join类操作。

JavaPairRDD<String, Tuple2<String, Row>> joinedRdd = rdd2.mapToPair(
        new PairFunction<Tuple2<Long,String>, String, Tuple2<String, Row>>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, Tuple2<String, Row>> call(Tuple2<Long, String> tuple)
                    throws Exception {
                // 在算子函数中,通过广播变量,获取到本地Executor中的rdd1数据。
                List<Tuple2<Long, Row>> rdd1Data = rdd1DataBroadcast.value();
                // 可以将rdd1的数据转换为一个Map,便于后面进行join操作。
                Map<Long, Row> rdd1DataMap = new HashMap<Long, Row>();
                for(Tuple2<Long, Row> data : rdd1Data) {
                    rdd1DataMap.put(data._1, data._2);
                }
                // 获取当前RDD数据的key以及value。
                String key = tuple._1;
                String value = tuple._2;
                // 从rdd1数据Map中,根据key获取到可以join到的数据。
                Row rdd1Value = rdd1DataMap.get(key);
                return new Tuple2<String, String>(key, new Tuple2<String, Row>(value, rdd1Value));
            }
        });

                        // 这里得提示一下。
                        // 上面的做法,仅仅适用于rdd1中的key没有重复,全部是唯一的场景。
                        // 如果rdd1中有多个相同的key,那么就得用flatMap类的操作,在进行join的时候不能用map,而是得遍历rdd1所有数据进行join。
                        // rdd2中每条数据都可能会返回多条join后的数据。

                6.5.3 方案实现原理

                        普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。

                        但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示。

                 6.5.4 方案优缺点

                        优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。

                        缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值