文章目录
1 前言
随着人工智能的发展,一个基于对话界面的语言模型聊天机器人震惊了世界。如何使用这个工具改进科研是一个近年来明显的问题。其目标是评估如何安全地使用这项技术来产生更好的科学并提高生产力。
Milton Pividori 在nature上发表了一篇文章《Chatbots in science: What can ChatGPT do for you?》,提出了在使用 ChatGpt 等 Chatbots 时需要注意的三个点:
- 设计好提示词
- 找到适合机器的任务
- 让机器多写少读
下面对这三个部分分别进行详细介绍。
2 设计好提示词
要有效地使用聊天机器人,你需要一个好的提示。这听起来很明显,但当该工具无法回答一个表达不清的问题时,我的一些同事仍然会感到沮丧并放弃。
好的快速设计有很多细微差别,但基本原则很简单:
- 明确你希望模型做什么(多用“总结”或“解释”等命令)。
- 让模型扮演一个角色(“你是一名专业的文案编辑”)。
- 提供真实输入和输出的示例,可能涵盖特殊示例,向模型展示您希望它做什么。
- 指定模型应该如何回答(例如“向基本了解表观遗传学的人解释”,或“向普通人解释xx专业名词”),甚至指定确切的输出格式(例如JSON或CSV文件)。
- 另外也可以指定字数限制、文本应使用主动语态还是被动语态以及任何其他要求。查看“快速工程备忘单(Prompt Engineering Cheat Sheet)”以获取更多提示。
明确、具体且结构化的提示词往往能获得更高质量的回复。
2.1 不同场景的提示词示例
2.1.1 文献综述辅助
- 示例(归纳研究现状):
“当前关于[XXX理论]在[YYY领域]中的应用有哪些争议性观点?请列出3个主要学术争议,并分别引用近5年内的3篇关键论文(APA格式)。”
2.1.2 方法论设计
- 示例(方法选择):
“我需要研究[AAA问题],计划采用混合研究方法。请对比定量实验设计和质性访谈法的适用性,并建议如何结合二者,字数控制在300字以内。”
2.1.3 数据分析与解释
- 示例(结果描述):
“我的实验结果显示[XXX组]的均值显著高于[YYY组](p=0.02),但效应量较小(d=0.3)。请用学术语言解释这一结果的可能原因,并提出2条后续研究建议。”
2.1.4 论文结构与逻辑优化
- 示例(段落改写):
“请将以下段落改为更学术化的表达,避免口语化词汇,并强调[理论A]与[理论B]的对比:”
(附原文)
2.1.5 学术语言润色
- 示例(语法与风格):
“请以学术英语润色以下句子,确保使用被动语态和正式词汇,并符合Nature期刊的写作风格:”
(附原文)
2.1.6 创新点提炼
- 示例:
“我的研究结合了[方法A]和[方法B],并在[场景C]中验证了假设。请帮我提炼3个创新点,要求突出跨学科贡献和实际应用价值。”
2.1.7 回复审稿意见
- 示例:
“审稿人指出我的样本量较小(N=50),可能存在统计效力不足的问题。请帮我撰写礼貌且有力的回复,说明已通过[XXX方法]缓解此问题,并引用2篇支持小样本合理性的文献。”
2.2 避免低效提示词
- 过于模糊:
❌“帮我写一篇关于人工智能的论文。”
✅“请生成一篇关于‘深度学习在医学影像诊断中的伦理挑战’的论文大纲,包含引言、3个核心论点及结论。” - 忽略学术规范:
❌“随便解释一下量子计算。”
✅“用简明语言解释量子计算的基本原理,并引用IBM 2023年白皮书中的定义。”
3 找到适合机器的任务
任务的哪些方面只有人类才能做出贡献,哪些方面更机械,通常也更无聊?
以研究项目的文献综述阶段为例。
定义研究问题涉及创造性思维;你需要仔细阅读论文,找出研究差距,提出假设,并开始思考如何通过实验来解决这个问题。
然而,在这个过程的后期,你的目标会有所不同。此时,你可能想快速“阅读”(即总结)与你的工作不太直接相关的文章。在这种情况下,使用聊天机器人助手的风险较小。
关键原则:让AI处理耗时但技术含量低的环节,研究者聚焦核心创新与深度分析。
本文认为适合机器的任务例如:
- 风格写作辅助:语言风格适配能力强,但需确保术语和逻辑正确
- 数据分析与可视化建议:可快速生成分析框架,但需人工验证统计方法合理性
- 学术交流辅助:结构化表达是AI的强项,但策略需结合领域知识优化
应避免交给ChatGPT的任务:
- 需深度推理的任务
- ❌ 设计全新理论框架
- ❌ 对矛盾数据提出原创性解释
- 依赖精确数据验证的任务
- ❌ 数学证明推导
- ❌ 实验数据真实性判断
- 主观决策型任务
- ❌ 选择论文投稿期刊
- ❌ 决定研究伦理问题的处理方式
- 高度专业化的任务
- ❌ 编写特定仪器的操作代码(除非提供详细协议)
- ❌ 解读领域内未公开的专有数据
4 让机器多写少读
根据作者的经验,使用聊天机器人写作比使用它阅读风险更小。要让GPT“阅读”一篇论文,你必须相信它能准确地提取最重要的观点,因为你可能不会自己阅读这篇文章。但是,当使用它进行写作时,您可以完全控制输出,并在出现“幻觉”(无意义或不准确的文本)时捕捉到它们。
核心原则:让机器输出结构化内容
4.1 分步生成内容,避免长篇输出
将复杂任务拆解为机器分步写作,用户只需确认阶段性成果。
示例:
- 任务:撰写论文讨论部分
步骤化提示:
① “基于我的结果(附结果),生成3个与已有文献对比的角度,用关键词形式列出。”
② “针对角度1‘与Smith 2020的差异’,生成一段对比分析,要求先陈述差异,再解释原因,总字数<150字。”
③ “将上述内容转为学术化表达,并添加2处虚构引用(标注‘需替换为真实文献’)。”
4.2 自动化文本处理
让机器直接处理原始材料,用户只查看处理后的结果。
示例:
- 任务:整理访谈记录
提示词:
“以下是10段质性访谈记录,请:- 提取每段中提及‘政策障碍’的关键句,用‘▶’标记;
- 归类到‘经济’‘技术’‘制度’三类中,表格呈现,并统计频次。”
4.3 聚焦关键信息提取
用机器过滤冗余信息,直接输出决策所需内容。
示例:
- 任务:选择研究方法
提示词:
“我的研究目标是验证A对B的非线性影响,样本量较小(N=80),且需控制变量C。
请列出3种适用方法的对比表格,包含以下列:方法名称、适合度(1-5分)、所需技能、潜在风险。”
4.4 额外注意
- 准确性校验:对机器生成的术语、数据、引用需二次核查。
- 伦理边界:原创理论、核心结论需由研究者亲自撰写。
- 迭代控制:对复杂任务采用“生成-反馈-修正”循环,而非一次性长文本输出。
5 总结
当你自己都不知道要做什么的时候,就不要使用机器来帮你创造。而是在你目的强烈的时候,使用机器进行辅助,提高科研生产力。
随着人工智能的能力越来越强,他们可以帮助科学家专注于工作中具有创造性和挑战性的方面,并减轻那些不那么具有创造性的部分。挑战在于确定只有人类才能完成的任务,并认识到人工智能仍然存在的局限性。