手写字体生成器,这种软件居然被大佬做出来了!

本文介绍了一款强大的软件——手写模拟器,能将电子文档转换为逼真的手写体,适用于罚抄、感谢信手写等场景,显著提高文件制作效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不知道大家有没有在高中或者是大学罚抄过课本,亦或是经常点外卖的小伙伴有没有收到过卖家的手写感谢信?

当罚抄时脑海在想,如果有一款软件可以把某度上 copy 的文字变为手写体就好了,咱打印出来就好了,面对卖家的感谢信的时候也疑惑,难道卖家真的就一个一个字写感谢信呀,哪来那么多时间呀

图片

还别急,这小资源就给大家分享一款堪称神器的软件,上面的需求都统统可以满足

图片

优质小软件,文档秒变手写体!

1

资源简介

软见名称:手写模拟器,此软件支持将文档内的文字转换为手写体,完全模拟真人手写,且效果相当逼真,转换效率高,且免费使用,无广告,安全无毒

软件简介:

  • 软件支持 Win 系统,大小 57M

  • 完全模拟手写,效果极佳

  • 使用简单,安全无毒

2

资源展示

软件使用简单

软件的压缩包小资源打包在了文末,解压文件后可以看到一个“handwirte.exe”的软件,咱们双击即可打开

软件启动后可以看到各项设置,以及预览图

图片

手写转换效果自定义强

这款软件把电子文档转换为手写文档的转换效果真的极佳,堪称完美级别,之所以能做到这一切,是因为软件的自定义功能强,使用还简单

支持输出为四种字体,在软件内操作即可

图片

还可以把文字的背景转换,这光线和阴影真就特别的逼真

图片

大部分的数据都是可以自行调整的,对于大部分人来说,其实默认效果就十分不错啦,如果觉得还不够逼真,大胆的更改即可

图片

效果十分逼真,质量高

为了保证文章质量,小资源也自己给大家实测了软件,一次性转手写的文件不宜过多页数,文件最好不要太大,不然容易打不开

选择文件后选择输出路径后可以选择“预览”和“导出”

图片

但是选择预览速度较慢,选择直接导出的速度快很多,下面是小资源的导出截图,大家可以看看是否效果是不是十分逼真呀!

图片

3

总结

这款软件不管是功能还是体验,都是比较不错的呀,当以后需要手写大量文件的时候,直接调用此软件,可是能大大的提高效率的呀

话说,这软件要是出现在我高中时期就好了

软件下载:https://mdl.ink/UZZ8i7

【资源说明】 基于python实现手写痕迹文档图像摩尔纹消除源码+项目运行说明.zip 二、数据分析 **数据划分**:使用1000张做为训练集,81张作为验证集。 官方提供了训练集1081对,测试集A、B各200张。包含以下几个特征: 1.图像分辨率普遍较大 2.手写字包含红黑蓝多种颜色,印刷字基本为黑色 3.手写字除了正常文字外,还包含手画的线段、图案等内容 4.试卷上的污渍、脏点也属于需要去除的内容 5.手写字和印刷字存在重叠 **mask**:根据原始图片和标签图像的差值来生成mask数据 计算RGB通道的平均差值 平均差值在20以上的设为 1 平均差值在20以下的设为 差值/20 三、模型设计 网络模型,是基于开源的EraseNet,然后整体改成了Paddle版本。同时也尝试了最新的PERT:一种基于区域的迭代场景文字擦除网络。基于对比实验,发现ErastNet,在本批次数据集上效果更好。从网络结构图上可以直观的看出ErastNet是多分支以及多阶段网络其中包括mask生成分支和两阶段图像生成分支。此外整个网络也都是基于多尺度结构。在损失函数上,原版的ErastNet使用了感知损失以及GAN损失。两个损失函数,是为了生成更加逼真的背景。但是本赛题任务的背景都是纯白,这两个损失是不需要的,可以直接去除。此外,由于ErastNet网络是由多尺度网络组成,结合去摩尔纹比赛的经验,我把ErastNet网络的Refinement替换成了去摩尔纹比赛使用的多尺度网络 双模型融合: 模型一:erasenet去掉判别器部分,仅保留生成器 模型二:erasenet二阶段网络使用基于Non-Local的深度编解码结构 四、训练细节 **训练数据:** 增强仅使用横向翻转和小角度旋转,保留文字的先验 随机crop成512x512的patch进行训练 **训练分为两阶段:** 第一阶段损失函数为dice_loss + l1 loss 第二阶段损失函数只保留l1 loss ## 五、测试细节 测试trick: **分块测试**,把图像切分为512x512的小块进行预测,保持和训练一致 **交错分块测试**,测试图像增加镜像padding,且分块时边缘包含重复部分,每次预测仅保留每块预测结果的中心部分,这么做的原因是图像边缘信息较少,预测效果要差于中心部分 测试时对**测试**数据使用了横向的镜像**增强** 测试时将两个**模型**的预测结果进行**融合** 七、其他 data:定义数据加载 loss:定义损失函数 model:定义网络模型 compute_mask.py:生成mask文件 test.py: 测试脚本 train.py: 训练脚本 代码运行: 1.指定数据文件夹 2.运行sh train.sh 生成mask并开始训练 3.指定测试文件夹和模型路径,执行sh test.sh开始测试 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值