NoSQl概述

本文概述了NoSQL数据库的发展历程,从单机MySQL的局限到Memcached缓存、分库分表、MySQL集群,以及为何选择NoSQL应对大数据挑战。重点介绍了NoSQL的特点,如解耦、高性能和多样性,以及各类NoSQL数据库(如键值对、文档型、列存储和图形数据库)的应用场景、优缺点和典型例子。
摘要由CSDN通过智能技术生成

书山有路勤为径,学海无涯苦作舟

NoSQL

了解NoSQL演变

1、单机MySQL时代

在这里插入图片描述
90年代,一个基本的网站访问量一般不会太大,单个数据库完全足够!
那个时候,更多的去使用静态网页Html~服务器没有太大的压力!
思考一下,这种情况下:整个网站的瓶颈是什么?
1、数据量太大,一个机器放不下
2、数据索引(B+Tree),一个机器内存放不下
3、访问量(读写混合),一个服务器承受不了
只要开始出现以上三种情况之一,那么就需要晋级

2、Memcached(缓存)+MySQL+垂直拆分

网站80%的情况下都是在读,每次都要去查询数据库的话就十分麻烦!所以我们希望减轻数据库的压力,我们可以使用缓存来保证效率!
发展过程:优化数据结构和索引–>文件缓存(IO)–>Memcached(当时最热门技术!)
在这里插入图片描述

3、分库分表+水平拆分+MySQL集群

本质:数据库(读、写)
早些年MyISAM:表锁,十分影响效率!高并发下会出现严重的锁问题
之后转战Innodb行锁,然后慢慢使用mysql分库分表解决写的压力,后来推出MySQL的集群,满足了那个年代的需求
在这里插入图片描述

4、最近年代

2010-2020年间,世界发生了翻天覆地的变化;(定位、音乐、热榜)
MySQL等关系型数据库不够用,数据量很大,而且变化很快
MySQL有的使用它来存储一些比较大的文件,博客,图片。数据库表很大效率降低,如果有一种数据库专门来处理这种数据,MySQL压力就变的十分小。

5、为什么用NoSQL

用户的个人信息、社交网络、地理位置、用户自己产生的数据、用户的日志模式等等爆发式增长
这个时候我们就需要使用NoSQL数据库,NoSQL可以很好的处理以上情况!

什么是NoSQL

1、NoSQL

NoSQL = Not Only SQL(不仅仅是SQL)
关系型数据库:表格、行、列
泛指非关系型数据库,NoSQL在当今大数据环境下发展的十分迅速,Redis是发展最快的,而且是我们当下必须要掌握的一个技术!

很多的数据类型用户的个人信息,社交网络,地理位置。这些数据类型的存储不需要一个固定的格式!不需要越多的操作就可以横向扩展。Map<String,Object>使用键值对来控制!

2、NoSQL特点

解耦
1、方便扩展(数据之间没有关系,很好扩展)
2、大数据量高性能(Redis一秒写8万次,读取11万次,NoSQL的缓存记录级,是一种细粒度的缓存,性能会比较高!)
3、数据类型是多样型的(不需要事先设计数据库,随取随用)
4、传统RDBMS和NoSQL

传统的RDBMS
- 结构化组织
- SQL
- 数据和关系都存在单独的表中
- 数据操作,数据定义语言
- 严格的一致性
- 基础的事务
- ......
NoSQL
- 不仅仅是数据
- 没有固定的查询语言
- 简直对存储,列存储,文档存储,图形数据库(社交关系)
- 最终一致性
- CAP定理和BASE
- 高性能,高可用,高可扩
- ......

了解:3V+3高

大数据时代的3V:主要是描述问题的
1、海量Volume
2、多样Variety
3、试试Velocity
大数据时代的3高:主要是对程序的要求
1、高并发
2、高可扩
3、高性能

NoSQL的四大分类

KV键值对:

  • 新浪:Redis
  • 美团:Redis+Tair
  • 阿里、百度:Redis+memcache

文档型数据库(bson格式和json一样):

  • MongoDB(一般必须掌握)
    • MongoDB是一个基于分布式文件存储的数据库,C++编写,主要用来处理大量的文档
    • MongoDB是一个介于关系型数据库和非关系型数据库中间的产品,MongoDB是非关系型数据库中功能最丰富,最像关系型数据库的
  • ConthDB

列存储数据库

  • HBase
  • 分布式文件系统
    ** 图形关系数据库 **
  • 他不是存图行,放的是关系,比如:朋友圈社交网络,广告推荐!
  • Neo4j,InfoGrid

四者对比

分类Examples举例典型应用场景数据模型优点缺点
键值(key-valueTokyo,Cabinet/Tyrant,Redis,Voldemort,Oracle BDB内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等Key指向Value的键值对,通常用hash table来实现查找速度快数据无结构化,通常只被当作字符串或者二进制数据
列存储数据库Cassandra,HBase,Riak分布式的文件系统以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限
文档型数据库CouchDB,MongoDbWeb应用(与Key-Value类似,Value是结构化的,不同的是数据库能够了解Value的内容)Key-Value对应的键值对,Value为结构化数据数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构查询性能不高,而且缺乏统一的查询语法
图形(Graph)数Neo4J,InfoGrid,Infunite Graph社交网络,推荐系统等,专注于构建图结构利用图结构相关算法很多时候需要对整个图做计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值