问题描述
我们知道,阶乘n!表示n*(n-1)*(n-2)*......*2*1, 类似的,可以定义多阶乘计算,例如:5!!=5*3*1,依次可以有n!...!(k个‘!’,可以简单表示为n(k)!)=n*(n-k)*(n-2k)*....(直到最后一个数<=0)。
现给定一组数据n、k、m,当m=1时,计算并输出n(1)!+n(2)!+......+n(k)!的值,m=2时计算并输出n(1)!+n(2)!+......+n(k)!的各个位上的数字之和。
输入格式
两行,第一行为n和k,第二行为m。
输出格式
一行,为n(1)!+n(2)!+......+n(k)!的值或n(1)!+n(2)!+......+n(k)!的各个位上的数字之和。
样例输入
5 1
2
样例输出
3
数据规模和约定
0 < k < n <= 20
注意溢出 ,早先几次因为没有考虑到溢出出错了
#include<iostream>
using namespace std;
//计算n(k)!的值
long long calSum(int n,int k){
int num = n;
long long sum = n;
while (num-k>0) {
sum *= (num - k);
num -= k;
}
return sum;
}
//各个位上的数字之和
int count(long long n) {
int m;