该算法的思路如下:
-
首先,定义一个二叉树结点的结构体,包含值、左子结点、右子结点和父结点。
-
创建一个函数
createNode
,用于创建新的二叉树结点。函数接收一个值作为参数,并返回指向新结点的指针。 -
创建一个函数
findAndInsertNode
,用于查找树中值为K的结点,并在找到的结点的双亲结点和双亲的左子树之间插入一个值为X的结点。函数接收一个指向树根指针的指针作为参数,以便可以修改树根指针的值。 -
在
findAndInsertNode
函数中,首先检查树根指针是否为空,如果为空则直接返回。 -
通过循环遍历二叉树,查找值为K的结点。如果找到了值为K的结点,则继续执行后续操作;如果没有找到,则返回。
-
如果找到了值为K的结点,创建一个新的结点,并调用
createNode
函数创建新结点。将新结点的值设置为X。 -
判断值为K的结点是否有父结点。如果有父结点,则将新结点插入到父结点和父结点的左子树之间。更新新结点的父指针、父结点的左子结点指针和新结点的左子结点指针。
-
如果值为K的结点没有父结点,说明它是树的根结点。将新结点作为树的根结点,并更新新结点的左子结点指针和原根结点的父指针。
-
最后,返回一个布尔值表示是否成功找到并插入结点。实现:
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
int value;
struct TreeNode *left;
struct TreeNode *right;
struct TreeNode *parent;
};
// 创建新结点
struct TreeNode* createNode(int value) {
struct TreeNode *newNode = (struct TreeNode*)malloc(sizeof(struct TreeNode));
newNode->value = value;
newNode->left = NULL;
newNode->right = NULL;
newNode->parent = NULL;
return newNode;
}
// 查找值为K的结点并在双亲结点和双亲的左子树之间插入值为X的结点
int findAndInsertNode(struct TreeNode **T, int K, int X) {
if (*T == NULL) {
return 0;
}
// 查找值为K的结点
struct TreeNode *currentNode = *T;
while (currentNode != NULL && currentNode->value != K) {
if (K < currentNode->value) {
currentNode = currentNode->left;
} else {
currentNode = currentNode->right;
}
}
// 如果找到了值为K的结点
if (currentNode != NULL) {
// 创建新结点
struct TreeNode *newNode = createNode(X);
if (currentNode->parent != NULL) {
// 插入新结点
newNode->parent = currentNode->parent;
if (currentNode->parent->left == currentNode) {
currentNode->parent->left = newNode;
} else {
currentNode->parent->right = newNode;
}
newNode->left = currentNode;
currentNode->parent = newNode;
} else {
// 如果K结点是树根,则将新结点作为树根
newNode->left = currentNode;
currentNode->parent = newNode;
*T = newNode;
}
return 1;
}
return 0;
}
上述代码定义了一个结构体 TreeNode
表示二叉树结点,包括值、左子结点、右子结点和父结点。通过 createNode
函数创建新结点,通过 findAndInsertNode
函数查找指定值的结点并进行插入操作。