编写程序对给定的有向图(不一定连通)进行深度优先遍历,图中包含n个顶点,编号为0至n-1。本题限定在深度优先遍历过程中,如果同时出现多个待访问的顶点,则优先选择编号最小的一个进行访问,以顶点0为遍历起点。
输入格式:
输入第一行为两个整数n和e,分别表示图的顶点数和边数,其中n不超过20000,e不超过50。接下来e行表示每条边的信息,每行为两个整数a、b,表示该边的端点编号,但各边并非按端点编号顺序排列。
输出格式:
输出为一行整数,每个整数后一个空格,即该有向图的深度优先遍历结点序列。
输入样例1:
3 3
0 1
1 2
0 2
输出样例1:
0 1 2
输入样例2:
4 4
0 2
0 1
1 2
3 0
输出样例2:
0 1 2 3
知识点:
- 构造邻接表
vector <int> v[2005]
, - 进行深度优先遍历
dfs
, - 对子节点排序
sort(v[i].begin(),v[i].end())
思路:有题可知此题要进行深度优先遍历所以要构造邻接表,进行深度优先遍历。因为题目中说当有两个子节点是要按升序输出,所以需要对子节点进行排序。
注意:因此图不能是不连通的所以我们需要循环进行深度优先遍历,理由如下图
自我纠正:刚开始想的是book数组没有遍历到的点循环输出其实应该是循环进行dfs进行遍历。
源码:
#include<bits/stdc++.h>
using namespace std;
int book[20005];
vector<int> v[20005];
void dfs(int cur) {
cout << cur << " ";
book[cur] = 1;
int len = v[cur].size();
for (int i = 0;i < len;i++) {
if (book[v[cur][i]] == 0) {
dfs(v[cur][i]);
}
}
}
int main() {
int n, e;
cin >> n >> e;
int a, b;
for (int i = 1;i <= e;i++) {
cin >> a >> b;
v[a].push_back(b);
}
for (int i = 0;i < n;i++) {
sort(v[i].begin(), v[i].end());
}
for(int i=0;i<n;i++){
if(book[i]==0)
dfs(i);
}
}