Python pandas模块

本文详细介绍了Python pandas库的使用,包括数据读取、数据结构DataFrame与Series的创建和查询、数据查询方法loc和iloc的用法、新增数据列、处理缺失值、排序、字符串处理、index的使用、merge的多种合并方式以及concat和append的区别。内容涵盖了从基本操作到高级技巧,是学习和使用pandas进行数据分析的全面指南。
摘要由CSDN通过智能技术生成

在这里插入图片描述

1 pandas数据读取

Pandas需要先读取表格类型的数据,然后进行分析

在这里插入图片描述

1.1 读取文件和基础语句:

读取csv文件数据:

import pandas as pd
filepatch=r"C:\Users\radiomumm\Desktop\sucai\nba.csv"
#读取csv文件数据
ratings=pd.read_csv(filepatch)
#查看文件开头几行
print(ratings.head())
#查看文件行列属性,(行,列)
print(ratings.shape)
#查看列名,返回的是一个列表
print(ratings.columns)
#查看索引列
print(ratings.index)
#查看每列数据的数据类型
print(ratings.dtypes)

读取txt文件数据,txt文件需要以行列行使储存数据:

import pandas as pd
filepatch=r"C:\Users\radiomumm\Desktop\sucai\nba.txt"
#自定义读取文件,sep=设置分隔符,header=设置标题行有无,names=设置自定义列名。
ratings=pd.read_csv(filepatch,sep="\t",header=None,names=['NAME', 'state'])
print(ratings.head())

读取excel文件数据:

import pandas as pd
filepatch=r"C:\Users\radiomumm\Desktop\sucai\bhlh112.xlsx"
ratings=pd.read_excel(filepatch)
print(ratings.head())

2 pandas数据结构(dataframe & series)

DataFrame:二维数据,整个表格,多行多列。

Series:一维数据,代表一行或一列。包含一组数据(不同数据类型)和一组与之相关的数据标签(索引)组成。

在这里插入图片描述

3 创建Series或Dataframe

3.1 series:

3.1.1 列表创建series:

import pandas as pd
sl=pd.Series([1,"A",23,5.4])
# [out]
# 0      1     
# 1      A     
# 2     23     
# 3    5.4
# dtype: object 

#获取索引
print(sl.index)#"RangeIndex(start=0, stop=4, step=1)"
# 获取值数列
print(sl.values)#[1 'A' 23 5.4]
#更换索引列,创建一个具有标签的Series.
sl=pd.Series([1,"A",23,5.4],index=["a","b","c","d"])
print(sl.index)#Index(['a', 'b', 'c', 'd'], dtype='object')

3.1.2 字典创建series:

#使用字典创建Series
dictdata={
   "a":123,"b":3234,"c":1.2,"d":"end"}
sl2=pd.Series(dictdata)
print(sl2)
# [out]
# a     123
# b    3234
# c     1.2
# d     end
# dtype: object

3.1.3 查询Series中的数据

print(sl2["a"])#查询一个值时,返回原生数据。
print(sl2[["a","b"]])#查询两个值时,返回一个Series。

3.2 Dataframe

3.2.1 创建Dataframe:

①.常见的方法为第一章中的Pandas读取excel/csv/mysql

②.使用多个字典文件创建Dataframe

import pandas as pd
dataf={
   "name":["xiaohong","xiaozhang","xiangqiang"],
       "age":[21,23,22],
       "gender":["female","male","female"],
       "school":["1s","3s","2s"]}
df=pd.DataFrame(dataf)
print(df)
# [out]
#          name  age  gender school
# 0    xiaohong   21  female     1s
# 1   xiaozhang   23    male     3s
# 2  xiangqiang   22  female     2s
print(df.index)#RangeIndex(start=0, stop=3, step=1)
print(df.columns)#Index(['name', 'age', 'gender', 'school'], dtype='object')

3.2.2 查询Dataframe中的数据:

如果只查询一列、一行,返回的是Series。

如果查询的说多列、多行,返回的是一个Dataframe。

print(df["age"])#返回的是Series
print(df[["age"]])#返回的是Dataframe
print(df[["age","school"]])

4 pandas数据查询

4.1 loc和iloc的用法

4.1.1 loc

loc 基于行标签和列标签(x_label、y_label)进行索引,主要查询方法:

1.使用单个labe伯查询数据

2.使用值列表批查询

3.使用数伯区间进行范围查询

4.使用条件太达式查向

5.调用函数查询

loc先行后列,中间用逗号(,)分割。

4.1.1.0 数据准备

传入NBA球员薪资情况表:
在这里插入图片描述

import pandas as pd
# 0.数据的预处理
filepatch=r"C:\Users\radiomumm\Desktop\sucai\nba.csv"
#读取csv文件数据
df=pd.read_csv(filepatch)
#设置列索引,inplace=True直接改变df格式
df.set_index("NAME",inplace=True)
#将"SALSRY"中的"$45,780,966"格式修改为"45780966"数值格式,以便于就绪操作。
df.loc[:,"SALSRY"]=df["SALSRY"].str.replace("$","").str.replace(",","").astype("int32")
4.1.1.1 使用单个label值查询数据
# 查询"Stephen Curry, PG"的薪资
print(df.loc["Stephen Curry, PG","SALSRY"])#返回单一值,"45780966"
# 查询"Stephen Curry, PG"的薪资和队伍
print(df.loc["Stephen Curry, PG",["SALSRY","TEAM"]])#返回一个Series
4.1.1.2使用值列表批量查询数据
# 查询"Stephen Curry, PG"/"James Harden, SG"/"John Wall, PG"的薪资
print(df.loc[["Stephen Curry, PG","James Harden, SG","John Wall, PG"],"SALSRY"])#得到一个series

print(df.loc[["Stephen Curry, PG","James Harden, SG","John Wall, PG"],["SALSRY","TEAM"]])#得到一个Dataframe
4.1.1.3使用数值区间批量查询数据

【区间既包含开始,也包含结束】

print(df.loc["Stephen Curry, PG":"John Wall, PG","SALSRY"])#行index查询,前三行的薪资
print(df.loc["Stephen Curry, PG","TEAM":"SALSRY"])#列index查询,第一行的两列数据
print(df.loc["Stephen Curry, PG":"John Wall, PG","TEAM":"SALSRY"])#行和列同时使用区间查询
4.1.1.4使用条件表达式查询

【bool列表的长度得等于行数或者列数】

# 查询薪资大于41018900的球员
print(df.loc[df["SALSRY"]>41018900,:])
# 查询薪资大于41018900的球员,且在"Los Angeles Lakers"队中。【每个条件由括号分隔】
print(df.loc[(df["SALSRY"]>41018900)&(df["TEAM"]=="Los Angeles Lakers"),:])
4.1.1.5使用函数查询
# 直接调用lambda函数,输入整个df,然后按条件筛选。
print(df.loc[lambda df :(df["SALSRY"]>41018900)&(df["TEAM"]=="Los Angeles Lakers"),:])
# 编写自己的函数进行查询,所有属于"Golden State Warriors"队的球员
def choose_maydata(df):
    return df["TEAM"]=="Golden State Warriors"
print(df.loc[choose_maydata,:])

4.1.2 iloc

iloc 基于行索引和列索引(index,columns)都是从 0 开始

如果数据的行标签和列标签名字太长或不容易记,则用 iloc 很方便,只需记标签对应的索引即可。

print(df.iloc[0,2])#取出Stephen Curry, PG的薪资数据,"45780966"
print(df.iloc[0:2])#取前两行对应数据
print(df.iloc[:,0:2])#取前两列对应数据
print(df.iloc[0:2,0:2])#取前两行和前两列对应数据
print(df.iloc[[0,2],[0,1,2]])#取第一行和第三行、第一列和第四列对应的数据

5 Pandas新增数据列

【直接赋值/apply/assign/分条件赋值】

5.0 数据预处理

import pandas as pd
# 0.数据的预处理
filepatch=r"C:\Users\radiomumm\Desktop\sucai\nba.csv"
#读取csv文件数据
df=pd.read_csv(filepatch)

5.1直接赋值

和上文提到的修改数值方法相同,将Series格式看作为dictionary直接赋值。

# 选中df中的"SALSRY"列,对改列进行重新赋值,赋值内容为去除"$"和","并转化为int32格式
df.loc[:,"SALSRY"]=df["SALSRY"].str.replace("$","").str.replace(",","").astype("int32")
# 新增列,球员上场位置。
df.loc[:,"positions_TYPE"]=df["NAME"].str.replace("\w* \w*,","")
# 修改球员名字后的上场位置。
df.loc[:,"NAME"]=df["NAME"].str.replace(",.*","")

5.2 df.apply方法

这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据结构传入给自己实现的函数中,我们在函数中实现对Series不同属性之间的计算,返回一个结果,则apply函数 会自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。

实例:添加一列实例:薪资大于40000000的为高薪,低于10500000的为底薪,否则就是正常薪资。

def get_SALSRY(df):
    if df["SALSRY"]>=40000000:
        return "high"
    elif df["SALSRY"]<=10500000:
        return "low"
    else:
        return "normal"
df.loc[:,"hight_low"]=df.apply(get_SALSRY,axis=1)#第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。
#使用value_counts()函数对该列进行计数
x=df["hight_low"].value_counts()
print(x)

5.3 df.assign方法

能够同时新增多个列,返回一个新列,该对象除新列外,还包含所有原始列。【assgin不会改变原有df,因此需要重新赋值】

实例:添加一列球员人民币薪资

df=df.assign(RMB=lambda x :x["SALSRY"]*6.72)

5.4 按条件选择分组分别赋值

按条件先选择数据,然后对这部分数据赋值新列

实例:PG球员薪资超过30000000认为是球星。

df["superstar"]=""
df.loc[df["SALSRY"]>=30000000,"superstar"]="star"
df.loc[df["SALSRY"]<30000000,"superstar"]="normal_player"
# print(df.head(120))
x=df["superstar"].value_counts()
print(x)

6 Pandas对缺值的处理

三类函数完成以上操作:

●isnll和notnull: 检测是否是空值,可用于df和series。

●dropna: 丢弃、删除缺失值

  axis :删除行还是列,{0 or "index', 1 or 'columns’}, default 0

  how :如果等于any则任何值为空都删除,如果等于al则所有值都为空才删除。

  inplace :如果为True则修改当前df,否则返回新的df。

●fllna: 填充空值

   value:用于填充的值,可以是单个值,或者字典(key是列名,value是值)。

  method :等于il使用前一个不为空的值填充forword fll;等于bil使用后一个不为空的值填充backword fill。

   axis: 按行还是列填充,{0 or index', 1 or 'columns'}

   inplace :如果为True则修改当前df,否则返回新的df。

6.0 准备数据

录入qPCR的分析数据(excel):

其中skiprows=num这一参数能够忽略设置的行数,即skiprows=1:忽略第一行。

import pandas as pd
filepatch=r"C:\Users\radiomumm\Desktop\sucai\qpcr.xlsx"
df=pd.read_excel(filepatch,skiprows=1)#skiprows=num,忽略前num行读取。

6.1检测数据集中的空值

isnull返回的值均为True/False,适用于Dataframe和Series。

print(df.isnull())#返回整个Datafream中True/False,对应是否为空值。
print(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值