尽可能不重叠的批量切割图像并保存【Python】

本文介绍了如何使用sklearn.feature_extraction.image库中的extract_patches_2d函数将图像分割成重叠或非重叠的小图。该方法允许指定小块大小和最大数量,并提供了一个Python示例,展示如何批量处理一个文件夹中的图像,将其分割并保存为单独的patch文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有时候,我们需要将一张大图分割成多个小图。网上提供了大量方法,但是这些方法大多只能让你保证小块之间不重叠,或者无法控制切割的最终数量。本文将介绍sklearn.feature_extraction.image库中的extract_patches_2d函数。该函数可以将一张图像分割成多个重叠或非重叠的小图,以便进一步处理或分析。当你指定需要切割的数量时,该程序将会尽可能不重叠的切割你的图像。如下图所示。 


 这个程序是怎么实现的呢?本文将会首先介绍这个函数的使用,其次我将会给出一个示例程序直接帮助你批量切割图片。

目录

 〇、准备工作,PIL库安装

一、函数介绍

二、批量转换图片


 〇、准备工作,PIL库安装

可以通过以下命令在Python中安装Pillow库(它是Python Imaging Library的分支版本):

pip install Pillow

同时,你可以使用pip命令来安装scikit-learn,即sklearn。在命令行中输入以下命令即可安装:

pip install -U scikit-learn

此外,还

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值