- 博客(4)
- 收藏
- 关注
原创 CutPaste:Self-Supervised Learning for Anomaly Detection and Localization
之前定义好的方法为旋转,平移,翻转等,还要对比学习,能成功的区分正常值和异常值,但是这些方法大多数是专注于检测语义的异常值,不能检测细粒度的异常缺陷,检测局部缺陷是次优的,而且虽然在学习语义概念的表示效率较高,但是规律性较低(意思就是:虽然可能能学到物体的特征是不受其图像中具体位置变化而变化的,但是难以捕捉其连续性,图像都不是连续的或者重复的)所以本文提出了一种新的增强策略cutpaste。本文的创新点为:设计一种新的代理任务,用于自监督,意思为:设计了一个新的方法cutpaste,来训练单分类模型。
2023-12-13 15:59:08 687 1
原创 图像重建或修复实现异常检测1--DRAEM
训练过程:先将正常图像通过模拟异常生成模块,生成一个有异常的图像Ia,再将异常图像输入重建子网络(AE)中生成重建后的正常图像Ir(损失函数通过lr于原图l构造一个SSIM损失函数来训练参数),然后将Ia和Ir进行concat输入判别子网络(UNet),结合生成的异常生成损失函数进行训练,得到最后生成的异常分割掩码M,最后通过均值滤波器进行平滑,将像素的最大值记为n,得到异常图像的分数。判别子网络类似于U-Net的架构,UNet可以百度,这个子网络的输入Ic为重构子网络的输出lr和输入图像l的连接。
2023-12-08 22:39:09 1548 1
原创 Transformer
transformer可用于Seq2seq中,比如我对机器说一段话,机器能翻译出机器学习四个字,transformer就能有效的实现这个功能,下面详细解释一下transformer模型的结构下图中右边就是为transformer的架构,左边为编码器,右边为解码器以下便是encoder的作用,输入一排向量,输出一排向量,但不止用encoder,通过RNN和self-attention都可以实现,我们首先来看左边的encoder。
2023-12-04 23:07:07 368
原创 自注意力机制
现在多采用左边Dot-product的方式,将两个向量分别乘上不同的矩阵,wq和wk,其中wq和wk是可以学习的,然后变成q和k,q和k再相乘,相当于两个向量做内积,可以得到一个参数a,此时这个参数就可以表示出两个向量的相关性。举个例子,假设两个向量相关性很强,1向量为[0.95,0,0,0.05],2向量为[0.96,0,0,0.04],那么通过矩阵之后,得到的a必然比其他的大,因为其他的向量可能为[0,0.95,0,0.05],这显然不相关,所以这就能很好的将两个向量的相关性体现出来。
2023-12-04 22:10:23 368
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人