第5节:基于知识图谱的电影推荐实战

数据存放位置:D:\neo4j-community-5.9.0\import
Python driver:https://github.com/neo4j/neo4j-python-driver
快速清空数据库:

MATCH(n)
DETACH DELETE n

一. 下载好电影数据集

电影数据集下载地址:
TMDB 5000 Movie Dataset
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata
Netflix Prize data:
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data?select=combined_data_1.txt

二. 数据预处理

先跑完数据预处理,得到几个输出文件

三. 安装工具包与路径配置

pip install neo4j
https://github.com/neo4j/neo4j-python-driver

把数据复制到相应的位置:
在这里插入图片描述

四. 链接到数据库

uri = "neo4j://localhost:7687"
driver = GraphDatabase.driver(uri, auth=("neo4j", "密码"))
with driver.session() as session:
	q = session.run(f"""MATCH (g:Genre) RETURN g.genre AS genre""")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值